

Bisimulation and CTL*

Lecture #23 of Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

June 27, 2007

Overview Lecture #23

⇒ Repetition: Bisimulation equivalence

- CTL* equivalence
-

Bisimulation equivalence

Let $TS_i = (S_i, Act_i, \rightarrow_i, I_i, AP, L_i)$, $i=1, 2$, be transition systems

A *bisimulation* for (TS_1, TS_2) is a binary relation $\mathcal{R} \subseteq S_1 \times S_2$ such that:

1. $\forall s_1 \in I_1 \exists s_2 \in I_2. (s_1, s_2) \in \mathcal{R}$ and $\forall s_2 \in I_2 \exists s_1 \in I_1. (s_1, s_2) \in \mathcal{R}$
2. for all states $s_1 \in S_1, s_2 \in S_2$ with $(s_1, s_2) \in \mathcal{R}$ it holds:
 - (a) $L_1(s_1) = L_2(s_2)$
 - (b) if $s'_1 \in Post(s_1)$ then there exists $s'_2 \in Post(s_2)$ with $(s'_1, s'_2) \in \mathcal{R}$
 - (c) if $s'_2 \in Post(s_2)$ then there exists $s'_1 \in Post(s_1)$ with $(s'_1, s'_2) \in \mathcal{R}$

TS_1 and TS_2 are bisimilar, denoted $TS_1 \sim TS_2$, if there exists a bisimulation for (TS_1, TS_2)

Bisimulation equivalence

$$s_1 \rightarrow s'_1$$

$$\mathcal{R}$$

$$s_2$$

can be completed to

$$s_1 \rightarrow s'_1$$

$$\mathcal{R}$$

$$s_2 \rightarrow s'_2$$

and

$$s_1$$

$$\mathcal{R}$$

$$s_2 \rightarrow s'_2$$

$$s_1 \rightarrow s'_1$$

$$\mathcal{R}$$

$$s_2 \rightarrow s'_2$$

Bisimulation on paths

Whenever we have:

$$\begin{array}{ccccccc}
 s_0 & \rightarrow & s_1 & \rightarrow & s_2 & \rightarrow & s_3 \rightarrow s_4 \dots \dots \\
 \mathcal{R} \\
 t_0
 \end{array}$$

this can be completed to

$$\begin{array}{ccccccc}
 s_0 & \rightarrow & s_1 & \rightarrow & s_2 & \rightarrow & s_3 \rightarrow s_4 \dots \dots \\
 \mathcal{R} & & \mathcal{R} & & \mathcal{R} & & \mathcal{R} \\
 t_0 & \rightarrow & t_1 & \rightarrow & t_2 & \rightarrow & t_3 \rightarrow t_4 \dots \dots
 \end{array}$$

proof: by induction on index i of state s_i

Bisimulation vs. trace equivalence

$TS_1 \sim TS_2$ implies $Traces(TS_1) = Traces(TS_2)$

bisimilar transition systems thus satisfy the same LT properties!

Bisimulation on states

$\mathcal{R} \subseteq S \times S$ is a *bisimulation* on TS if for any $(s_1, s_2) \in \mathcal{R}$:

- $L(s_1) = L(s_2)$
- if $s'_1 \in Post(s_1)$ then there exists an $s'_2 \in Post(s_2)$ with $(s'_1, s'_2) \in \mathcal{R}$
- if $s'_2 \in Post(s_2)$ then there exists an $s'_1 \in Post(s_1)$ with $(s'_1, s'_2) \in \mathcal{R}$

s_1 and s_2 are *bisimilar*, $s_1 \sim_{TS} s_2$, if $(s_1, s_2) \in \mathcal{R}$ for some bisimulation \mathcal{R} for TS

$s_1 \sim_{TS} s_2 \quad \text{if and only if} \quad TS_{s_1} \sim TS_{s_2}$

Coarsest bisimulation

\sim_{TS} is an equivalence and the coarsest bisimulation for TS

Quotient transition system

For $TS = (S, Act, \rightarrow, I, AP, L)$ and bisimulation $\sim_{TS} \subseteq S \times S$ on TS let

$TS/\sim_{TS} = (S', \{\tau\}, \rightarrow', I', AP, L')$, the *quotient* of TS under \sim_{TS}

where

- $S' = S/\sim_{TS} = \{[s]_{\sim} \mid s \in S\}$ with $[s]_{\sim} = \{s' \in S \mid s \sim s'\}$
- \rightarrow' is defined by:
$$\frac{s \xrightarrow{\alpha} s'}{[s]_{\sim} \xrightarrow{\tau'} [s']_{\sim}}$$
- $I' = \{[s]_{\sim} \mid s \in I\}$
- $L'([s]_{\sim}) = L(s)$

The Bakery algorithm

Process 1:

```
.....
while true {  
    .....
    n1 :  $x_1 := x_2 + 1;$   

    w1 : wait until( $x_2 = 0 \mid\mid x_1 < x_2$ ) {  

    c1 :  $\dots$  critical section  $\dots$ }  

     $x_1 := 0;$   

    .....
}  
}
```



```
.....
while true {  
    .....
    n2 :  $x_2 := x_1 + 1;$   

    w2 : wait until( $x_1 = 0 \mid\mid x_2 < x_1$ ) {  

    c2 :  $\dots$  critical section  $\dots$ }  

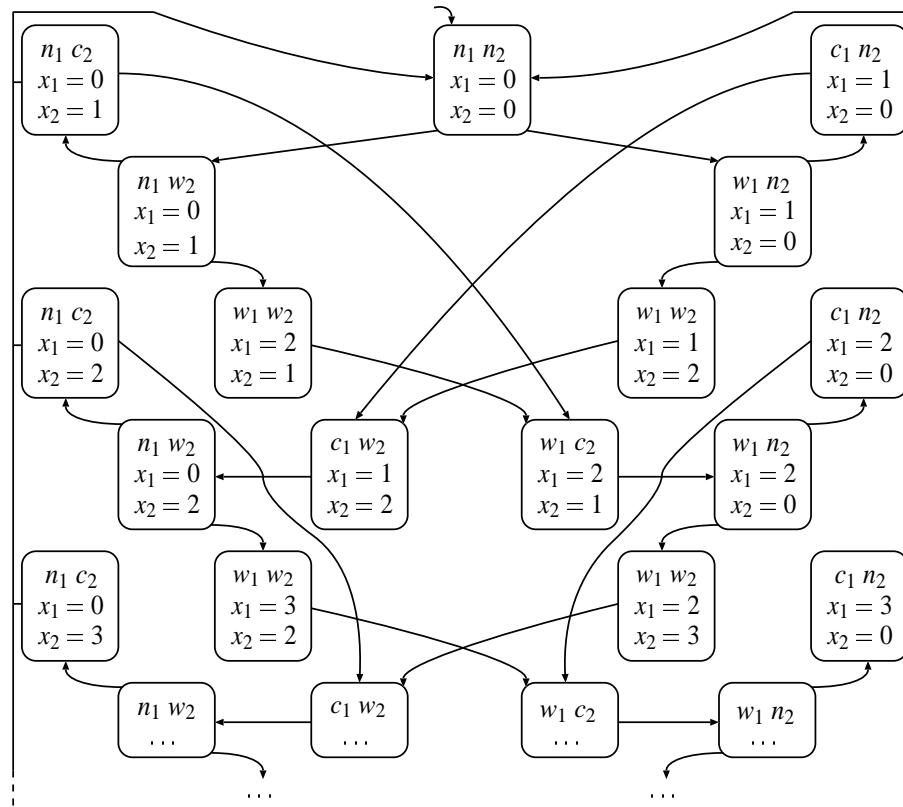
     $x_2 := 0;$   

    .....
}  
}
```

Process 2:

this algorithm can be applied to arbitrary many processes

Bakery algorithm transition system



infinite state space due to possible unbounded increase of counters

Data abstraction

Function f maps a reachable state of TS_{Bak} onto an abstract one in TS_{Bak}^{abs}

Let $s = \langle \ell_1, \ell_2, x_1 = b_1, x_2 = b_2 \rangle$ be a state of TS_{Bak} with $\ell_i \in \{ n_i, w_i, c_i \}$ and $b_i \in \mathbb{N}$

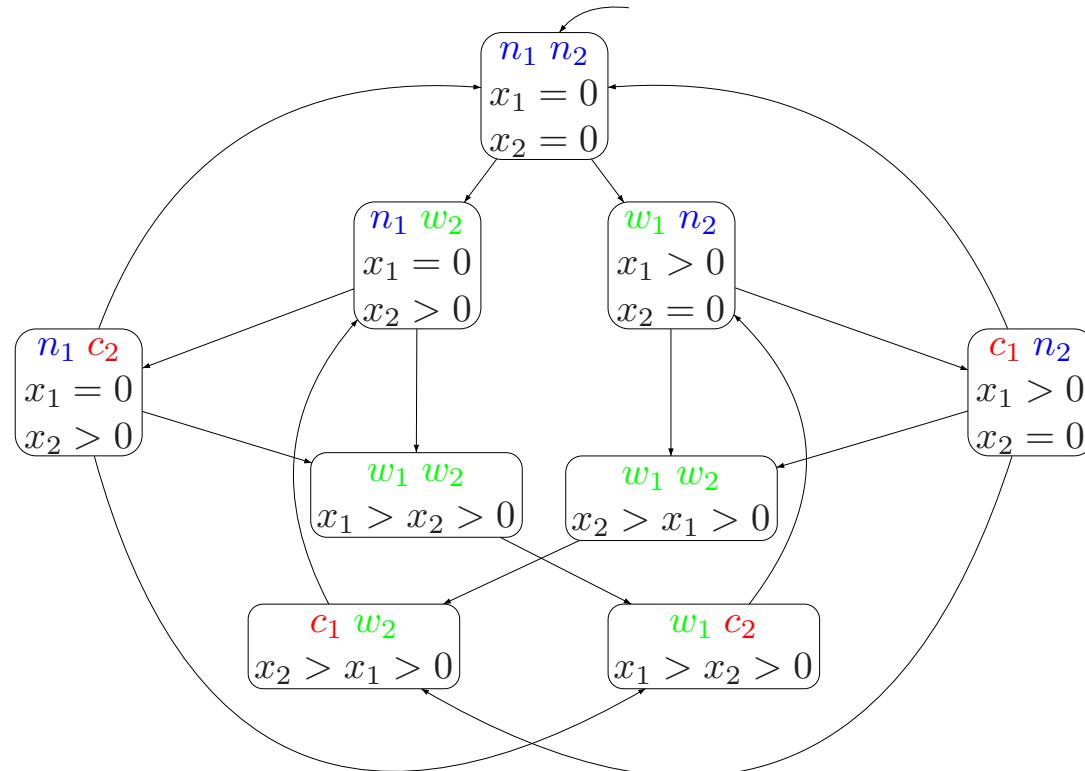
Then:

$$f(s) = \begin{cases} \langle \ell_1, \ell_2, x_1 = 0, x_2 = 0 \rangle & \text{if } b_1 = b_2 = 0 \\ \langle \ell_1, \ell_2, x_1 = 0, x_2 > 0 \rangle & \text{if } b_1 = 0 \text{ and } b_2 > 0 \\ \langle \ell_1, \ell_2, x_1 > 0, x_2 = 0 \rangle & \text{if } b_1 > 0 \text{ and } b_2 = 0 \\ \langle \ell_1, \ell_2, x_1 > x_2 > 0 \rangle & \text{if } b_1 > b_2 > 0 \\ \langle \ell_1, \ell_2, x_2 > x_1 > 0 \rangle & \text{if } b_2 > b_1 > 0 \end{cases}$$

It follows: $\mathcal{R} = \{ (s, f(s)) \mid s \in S \}$ is a bisimulation for $(TS_{Bak}, TS_{Bak}^{abs})$

for any subset of $AP = \{ \text{noncrit}_i, \text{wait}_i, \text{crit}_i \mid i = 1, 2 \}$

Bisimulation quotient



$$TS_{Bak}^{abs} = TS_{Bak} / \sim_{TS} \quad \text{for} \quad AP = \{ crit_1, crit_2 \}$$

Remarks

- Data abstraction yields a bisimulation relation
 - in this example; typically a simulation relation is obtained
- $TS_{Bak}^{abs} \models \varphi$ with, e.g.,:
 - $\square(\neg crit_1 \vee \neg crit_2)$ and $(\square\lozenge wait_1 \Rightarrow \square\lozenge crit_1) \wedge (\square\lozenge wait_2 \Rightarrow \square\lozenge crit_2)$
- Since $TS_{Bak}^{abs} \sim TS_{Bak}$, it follows $TS_{Bak} \models \varphi$
- Note: $Traces(TS_{Bak}^{abs}) = Traces(TS_{Bak})$
 - but checking trace equivalence is **PSPACE-complete**
 - while checking bisimulation equivalence is in poly-time

Overview Lecture #23

- Repetition: Bisimulation equivalence
- ⇒ CTL* equivalence

Syntax of CTL*

CTL* *state-formulas* are formed according to:

$$\Phi ::= \text{true} \quad | \quad a \quad | \quad \Phi_1 \wedge \Phi_2 \quad | \quad \neg \Phi \quad | \quad \exists \varphi$$

where $a \in AP$ and φ is a path-formula

CTL* *path-formulas* are formed according to the grammar:

$$\varphi ::= \Phi \quad | \quad \varphi_1 \wedge \varphi_2 \quad | \quad \neg \varphi \quad | \quad \bigcirc \varphi \quad | \quad \varphi_1 \bigcup \varphi_2$$

where Φ is a state-formula, and φ, φ_1 and φ_2 are path-formulas

in CTL*: $\forall \varphi = \neg \exists \neg \varphi$. This does not hold in CTL!

CTL* equivalence

States s_1 and s_2 in TS (over AP) are **CTL*-equivalent**:

$$s_1 \equiv_{CTL^*} s_2 \quad \text{if and only if} \quad (s_1 \models \Phi \text{ iff } s_2 \models \Phi)$$

for all CTL* state formulas over AP

$$TS_1 \equiv_{CTL^*} TS_2 \quad \text{if and only if} \quad (TS_1 \models \Phi \text{ iff } TS_2 \models \Phi)$$

for any sublogic of CTL*, logical equivalence is defined analogously

Trace equivalence and LTL equivalence

Let TS be a *finite* transition system and s, s' states in TS

The following statements are equivalent:

- (1) $Traces(s) \sim_{TS} Traces(s')$
- (2) s and s' are LTL-equivalent, i.e., $s \equiv_{LTL} s'$

Bisimulation vs. CTL* and CTL equivalence

Let TS be a *finite* transition system and s, s' states in TS

The following statements are equivalent:

- (1) $s \sim_{TS} s'$
- (2) s and s' are CTL-equivalent, i.e., $s \equiv_{CTL} s'$
- (3) s and s' are CTL*-equivalent, i.e., $s \equiv_{CTL^*} s'$

this is proven in three steps: $\equiv_{CTL} \subseteq \sim \subseteq \equiv_{CTL^*} \subseteq \equiv_{CTL}$

important: equivalence is also obtained for any sub-logic containing \neg, \wedge and \bigcirc

Proof: $\sim \subseteq \equiv_{CTL^*}$

Example master formula

Proof: $\equiv_{CTL} \subseteq \sim$

Bisimulation vs. CTL*-equivalence

For any transition systems TS and TS' (over AP):

$$TS \sim TS' \quad \text{iff} \quad TS \equiv_{CTL} TS' \quad \text{iff} \quad TS \equiv_{CTL^*} TS'$$

⇒ prior to model-check Φ , it is safe to first minimize TS wrt. \sim

this can be done with time complexity $\mathcal{O}(K \cdot \log N)$

The importance of this result

- CTL and CTL* equivalence coincide
 - despite the fact that CTL* is more expressive than CTL
- Bisimilar transition systems preserve the same CTL* formulas
 - and thus the same LTL formulas (and LT properties)
- Non-bisimilarity can be shown by a single CTL (or CTL*) formula
 - $TS_1 \models \Phi$ and $TS_2 \not\models \Phi$ implies $TS_1 \not\sim TS_2$
- You even do not need to use an until-operator!
- To check $TS \models \Phi$, it suffices to check $TS/\sim \models \Phi$

Example