
Bisimulation and CTL∗

Lecture #23 of Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

June 27, 2007

c© JPK

#23: Bisimulation and CTL∗ Model checking

Overview Lecture #23

⇒ Repetition: Bisimulation equivalence

• CTL∗ equivalence

•

c© JPK 1

#23: Bisimulation and CTL∗ Model checking

Bisimulation equivalence

Let TSi = (Si, Acti,→i, Ii, AP, Li), i=1, 2, be transition systems

A bisimulation for (TS1, TS2) is a binary relation R ⊆ S1 × S2 such that:

1. ∀s1 ∈ I1 ∃s2 ∈ I2. (s1, s2) ∈ R and ∀s2 ∈ I2 ∃s1 ∈ I1. (s1, s2) ∈ R

2. for all states s1 ∈ S1, s2 ∈ S2 with (s1, s2) ∈ R it holds:

(a) L1(s1) = L2(s2)

(b) if s′
1 ∈ Post(s1) then there exists s′

2 ∈ Post(s2) with (s′
1, s′

2) ∈ R

(c) if s′
2 ∈ Post(s2) then there exists s′

1 ∈ Post(s1) with (s′
1, s′

2) ∈ R

TS1 and TS2 are bisimilar, denoted TS1 ∼ TS2, if there exists a bisimulation for (TS1, TS2)

c© JPK 2

#23: Bisimulation and CTL∗ Model checking

Bisimulation equivalence

s1 −→ s′1 s1 −→ s′1
R can be completed to R R
s2 s2 −→ s′2

and

s1 s1 −→ s′1
R can be completed to R R
s2 −→ s′2 s2 −→ s′2

c© JPK 3

#23: Bisimulation and CTL∗ Model checking

Bisimulation on paths

Whenever we have:

s0 −→ s1 −→ s2 −→ s3 −→ s4

R
t0

this can be completed to

s0 −→ s1 −→ s2 −→ s3 −→ s4

R R R R R
t0 −→ t1 −→ t2 −→ t3 −→ t4

proof: by induction on index i of state si

c© JPK 4

#23: Bisimulation and CTL∗ Model checking

Bisimulation vs. trace equivalence

TS1 ∼ TS2 implies Traces(TS1) = Traces(TS2)

bisimilar transition systems thus satisfy the same LT properties!

c© JPK 5

#23: Bisimulation and CTL∗ Model checking

Bisimulation on states

R ⊆ S × S is a bisimulation on TS if for any (s1, s2) ∈ R:

• L(s1) = L(s2)

• if s′
1 ∈ Post(s1) then there exists an s′

2 ∈ Post(s2) with (s′
1, s′

2) ∈ R

• if s′
2 ∈ Post(s2) then there exists an s′

1 ∈ Post(s1) with (s′
1, s′

2) ∈ R

s1 and s2 are bisimilar, s1 ∼TS s2, if (s1, s2) ∈ R for some bisimulation R for TS

s1 ∼TS s2 if and only if TSs1 ∼ TSs2

c© JPK 6

#23: Bisimulation and CTL∗ Model checking

Coarsest bisimulation

∼TS is an equivalence and the coarsest bisimulation for TS

c© JPK 7

#23: Bisimulation and CTL∗ Model checking

Quotient transition system

For TS = (S, Act,→, I, AP, L) and bisimulation ∼TS ⊆ S × S on TS let

TS/∼TS = (S′, { τ },→′, I ′, AP, L′), the quotient of TS under ∼TS

where

• S′ = S/∼TS = { [s]∼ | s ∈ S } with [s]∼ = { s′ ∈ S | s ∼ s′ }

• →′ is defined by:
s α−−→ s′

[s]∼
τ−→′ [s′]∼

• I ′ = { [s]∼ | s ∈ I }
• L′([s]∼) = L(s)

c© JPK 8

#23: Bisimulation and CTL∗ Model checking

The Bakery algorithm

Process 1:
.

while true {
.

n1 : x1 := x2 + 1;

w1 : wait until(x2 = 0 ||x1 < x2) {
c1 : . . . critical section . . .}

x1 := 0;

.

}

Process 2:
.

while true {
.

n2 : x2 := x1 + 1;

w2 : wait until(x1 = 0 ||x2 < x1) {
c2 : . . . critical section . . .}

x2 := 0;

.

}

this algorithm can be applied to arbitrary many processes

c© JPK 9

#23: Bisimulation and CTL∗ Model checking

Bakery algorithm transition system

n1 n2
x1 � 0
x2 � 0

n1 c2
x1 � 0
x2 � 1

n1 w2
x1 � 0

w1 w2
x1 � 2
x2 � 1

c1 w2
x1 � 1
x2 � 2

c1 n2
x1 � 1
x2 � 0

w1 n2
x1 � 1
x2 � 0

w1 c2

n1 c2
x1 � 0

n1 w2
x1 � 0

x1 � 3

c1 n2

x2 � 0

x2 � 0

x2 � 3
x1 � 0

x2 � 0

x2 � 1

w1 w2
x1 � 1
x2 � 2

x1 � 2
x2 � 1

x2 � 2

x2 � 2

w1 w2

x2 � 2

c1 w2 w1 c2

� � � � � �

n1 w2 w1 n2

� � � � � �

w1 w2
x1 � 2

w1 n2
x1 � 2

x1 � 2

c1 n2
x1 � 3

n1 c2

x2 � 3

� � � � � �

infinite state space due to possible unbounded increase of counters

c© JPK 10

#23: Bisimulation and CTL∗ Model checking

Data abstraction

Function f maps a reachable state of TSBak onto an abstract one in TSabs
Bak

Let s = 〈�1, �2, x1 = b1, x2 = b2〉 be a state of TSBak with �i ∈ {ni, wi, ci } and
bi ∈ IN

Then:

f(s) =

8>>>>>>>><
>>>>>>>>:

〈�1, �2, x1 = 0, x2 = 0〉 if b1 = b2 = 0

〈�1, �2, x1 = 0, x2 > 0〉 if b1 = 0 and b2 > 0

〈�1, �2, x1 > 0, x2 = 0〉 if b1 > 0 and b2 = 0

〈�1, �2, x1 > x2 > 0〉 if b1 > b2 > 0

〈�1, �2, x2 > x1 > 0〉 if b2 > b1 > 0

It follows: R = { (s, f(s)) | s ∈ S } is a bisimulation for (TSBak , TSabs
Bak)

for any subset of AP = { noncriti, waiti, criti | i = 1, 2 }

c© JPK 11

#23: Bisimulation and CTL∗ Model checking

Bisimulation quotient
n1 n2

x1 = 0
x2 = 0

n1 w2

x1 = 0
x2 > 0

w1 n2

x1 > 0
x2 = 0

n1 c2

x1 = 0
x2 > 0

c1 n2

x1 > 0
x2 = 0

w1 w2

x1 > x2 > 0
w1 w2

x2 > x1 > 0

c1 w2

x2 > x1 > 0
w1 c2

x1 > x2 > 0

TSabs
Bak = TSBak/ ∼TS for AP = { crit1, crit2 }

c© JPK 12

#23: Bisimulation and CTL∗ Model checking

Remarks

• Data abstraction yields a bisimulation relation

– in this example; typically a simulation relation is obtained

• TSabs
Bak |= ϕ with, e.g.,:

– �(¬crit1 ∨ ¬crit2) and (��wait1 ⇒ ��crit1) ∧ (��wait2 ⇒ ��crit2)

• Since TSabs
Bak ∼ TSBak , it follows TSBak |= ϕ

• Note: Traces(TSabs
Bak) = Traces(TSBak)

– but checking trace equivalence is PSPACE-complete
– while checking bisimulation equivalence is in poly-time

c© JPK 13

#23: Bisimulation and CTL∗ Model checking

Overview Lecture #23

• Repetition: Bisimulation equivalence

⇒ CTL∗ equivalence

c© JPK 14

#23: Bisimulation and CTL∗ Model checking

Syntax of CTL∗

CTL∗ state-formulas are formed according to:

Φ ::= true
∣
∣
∣ a

∣
∣
∣ Φ1 ∧Φ2

∣
∣
∣ ¬Φ

∣
∣
∣ ∃ϕ

where a ∈ AP and ϕ is a path-formula

CTL∗ path-formulas are formed according to the grammar:

ϕ ::= Φ
∣
∣
∣ ϕ1∧ϕ2

∣
∣
∣ ¬ϕ

∣
∣
∣ © ϕ

∣
∣
∣ ϕ1 U ϕ2

where Φ is a state-formula, and ϕ, ϕ1 and ϕ2 are path-formulas

in CTL∗: ∀ϕ = ¬∃¬ϕ. This does not hold in CTL!

c© JPK 15

#23: Bisimulation and CTL∗ Model checking

CTL∗ equivalence

States s1 and s2 in TS (over AP) are CTL∗-equivalent:

s1 ≡CTL∗ s2 if and only if (s1 |= Φ iff s2 |= Φ)

for all CTL∗ state formulas over AP

TS1 ≡CTL∗ TS2 if and only if (TS1 |= Φ iff TS2 |= Φ)

for any sublogic of CTL∗, logical equivalence is defined analogously

c© JPK 16

#23: Bisimulation and CTL∗ Model checking

Trace equivalence and LTL equivalence

Let TS be a finite transition system and s, s′ states in TS

The following statements are equivalent:

(1) Traces(s) ∼TS Traces(s′)

(2) s and s′ are LTL-equivalent, i.e., s ≡LTL s′

c© JPK 17

#23: Bisimulation and CTL∗ Model checking

Bisimulation vs. CTL∗ and CTL equivalence

Let TS be a finite transition system and s, s′ states in TS

The following statements are equivalent:

(1) s ∼TS s′

(2) s and s′ are CTL-equivalent, i.e., s ≡CTL s′

(3) s and s′ are CTL∗-equivalent, i.e., s ≡CTL∗ s′

this is proven in three steps: ≡CTL ⊆ ∼ ⊆ ≡CTL∗ ⊆ ≡CTL

important: equivalence is also obtained for any sub-logic containing ¬, ∧ and ©

c© JPK 18

#23: Bisimulation and CTL∗ Model checking

Proof: ∼ ⊆ ≡CTL∗

c© JPK 19

#23: Bisimulation and CTL∗ Model checking

Example master formula

c© JPK 20

#23: Bisimulation and CTL∗ Model checking

Proof: ≡CTL ⊆ ∼

c© JPK 21

#23: Bisimulation and CTL∗ Model checking

Bisimulation vs. CTL∗-equivalence

For any transition systems TS and TS′ (over AP):

TS ∼ TS′ iff TS ≡CTL TS′ iff TS ≡CTL∗ TS′

⇒ prior to model-check Φ, it is safe to first minimize TS wrt. ∼

this can be done with time complexity O(K· log N)

c© JPK 22

#23: Bisimulation and CTL∗ Model checking

The importance of this result

• CTL and CTL∗ equivalence coincide

– despite the fact that CTL∗ is more expressive than CTL

• Bisimilar transition systems preserve the same CTL∗ formulas

– and thus the same LTL formulas (and LT properties)

• Non-bisimilarity can be shown by a single CTL (or CTL∗) formula

– TS1 |= Φ and TS2 �|= Φ implies TS1 �∼ TS2

• You even do not need to use an until-operator!

• To check TS |= Φ, it suffices to check TS/∼|= Φ

c© JPK 23

#23: Bisimulation and CTL∗ Model checking

Example

c© JPK 24

