

Simulation Preorder

Lecture #24 of Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

July 3, 2007

Overview Lecture #24

⇒ **Simulation Order**

- Simulation Equivalence
- Comparing Trace Equivalence, Bisimulation and Simulation
- Universal Fragment of CTL^*

Simulation order

Let $TS_i = (S_i, Act_i, \rightarrow_i, I_i, AP, L_i)$, $i=1, 2$, be transition systems.

A *simulation* for (TS_1, TS_2) is a binary relation $\mathcal{R} \subseteq S_1 \times S_2$ such that:

1. $\forall s_1 \in I_1 \exists s_2 \in I_2. (s_1, s_2) \in \mathcal{R}$

2. for all $(s_1, s_2) \in \mathcal{R}$ it holds:

(a) $L_1(s_1) = L_2(s_2)$

(b) if $s'_1 \in Post(s_1)$ then there exists $s'_2 \in Post(s_2)$ with $(s'_1, s'_2) \in \mathcal{R}$

$TS_1 \preceq TS_2$ iff there exists a simulation \mathcal{R} for (TS_1, TS_2)

Simulation order

$$s_1 \rightarrow s'_1$$

$$\mathcal{R}$$

$$s_2$$

can be completed to

$$s_1 \rightarrow s'_1$$

$$\mathcal{R}$$

$$s_2 \rightarrow s'_2$$

but not necessarily:

$$s_1$$

$$\mathcal{R}$$

$$s_2 \rightarrow s'_2$$

$$s_1 \rightarrow s'_1$$

$$\mathcal{R}$$

$$s_2 \rightarrow s'_2$$

Example

The use of simulations

- As a notion of correctness for *refinement*
 - $TS \preceq TS'$ whenever TS is obtained by deleting transitions from TS'
 - e.g., nondeterminism is resolved by choosing one alternative
- As a notion of correctness for *abstraction*
 - abstract from concrete values of certain program or control variables
 - use instead abstract values or ignore their value completely
 - used in e.g., software model checking of C and Java
 - formalised by an abstraction function f that maps s onto its abstraction $f(s)$

Abstraction function

- $f : S \rightarrow \widehat{S}$ is an *abstraction function* if $f(s) = f(s') \Rightarrow L(s) = L(s')$
 - S is a set of concrete states and \widehat{S} a set of abstract states, i.e. $|\widehat{S}| \ll |S|$

- Abstraction functions are useful for:

- **data abstraction**: abstract from values of program or control variables

$f : \text{concrete data domain} \rightarrow \text{abstract data domain}$

- **predicate abstraction**: use predicates over the program variables

$f : \text{state} \rightarrow \text{valuations of the predicates}$

- **localization reduction**: partition program variables into visible and invisible

$f : \text{all variables} \rightarrow \text{visible variables}$

Abstract transition system

For $TS = (S, \text{Act}, \rightarrow, I, \text{AP}, L)$ and abstraction function $f : S \rightarrow \widehat{S}$ let:

$TS_f = (\widehat{S}, \text{Act}, \rightarrow_f, I_f, \text{AP}, L_f)$, the **abstraction** of TS under f

where

- \rightarrow_f is defined by:
$$\frac{s \xrightarrow{\alpha} s'}{f(s) \xrightarrow{f} f(s')}$$
- $I_f = \{ f(s) \mid s \in I \}$
- $L_f(f(s)) = L(s)$; for $s \in \widehat{S} \setminus f(S)$, labeling is undefined

$\mathcal{R} = \{ (s, f(s)) \mid s \in S \}$ is a **simulation** for (TS, TS_f)

Simulation order on paths

Whenever we have:

$$s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow s_4 \dots \dots$$

$$\mathcal{R}$$

$$t_0$$

this can be completed to

$$s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow s_4 \dots \dots$$

$$\mathcal{R} \quad \mathcal{R} \quad \mathcal{R} \quad \mathcal{R} \quad \mathcal{R}$$

$$t_0 \rightarrow t_1 \rightarrow t_2 \rightarrow t_3 \rightarrow t_4 \dots \dots$$

the proof of this fact is by induction on the length of the path

note that a finite path may be simulated by a prefix of an infinite path!

Simulation is a pre-order

\preceq is a preorder, i.e., reflexive and transitive

Overview Lecture #24

- Simulation Order

⇒ **Simulation Equivalence**

- Comparing Trace Equivalence, Bisimulation and Simulation
- Universal Fragment of CTL^*

Simulation equivalence

TS_1 and TS_2 are *simulation equivalent*, denoted $TS_1 \simeq TS_2$,
if $TS_1 \preceq TS_2$ and $TS_2 \preceq TS_1$

Simulation order on states

A *simulation* for $TS = (S, Act, \rightarrow, I, AP, L)$ is a binary relation $\mathcal{R} \subseteq S \times S$ such that for all $(s_1, s_2) \in \mathcal{R}$:

1. $L(s_1) = L(s_2)$
2. if $s'_1 \in Post(s_1)$ then there exists an $s'_2 \in Post(s_2)$ with $(s'_1, s'_2) \in \mathcal{R}$

s_1 is *simulated by* s_2 , denoted by $s_1 \preceq_{TS} s_2$,
 if there exists a simulation \mathcal{R} for TS with $(s_1, s_2) \in \mathcal{R}$

$s_1 \preceq_{TS} s_2$ if and only if $TS_{s_1} \preceq TS_{s_2}$

$s_1 \simeq_{TS} s_2$ if and only if $s_1 \preceq_{TS} s_2$ and $s_2 \preceq_{TS} s_1$

Simulation quotient transition system

For $TS = (S, Act, \rightarrow, I, AP, L)$ and simulation equivalence $\simeq \subseteq S \times S$ let

$TS/\simeq = (S', \{\tau\}, \rightarrow', I', AP, L')$, the *quotient* of TS under \simeq

where

- $S' = S/\simeq = \{[s]_\simeq \mid s \in S\}$ and $I' = \{[s]_\simeq \mid s \in I\}$
- \rightarrow' is defined by:
$$\frac{s \xrightarrow{\alpha} s'}{[s]_\simeq \xrightarrow{\tau'} [s']_\simeq}$$
- $L'([s]_\simeq) = L(s)$

lemma: $TS \simeq TS/\simeq$; proof not straightforward!

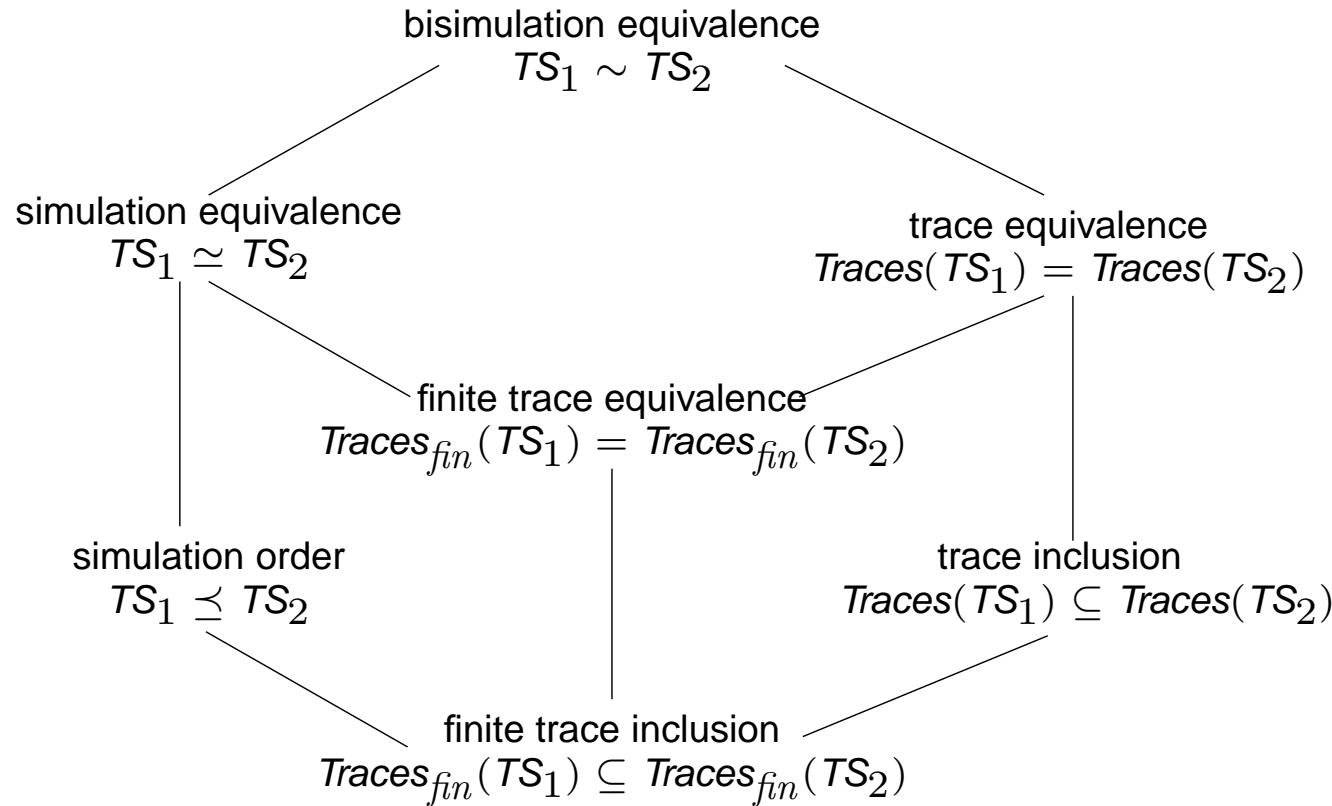
Overview Lecture #24

- Simulation Order
- Simulation Equivalence

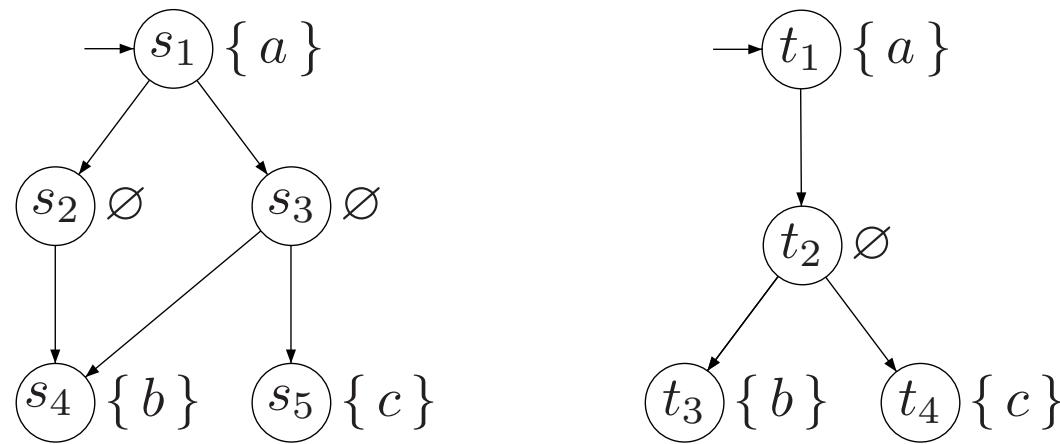
⇒ Comparing Trace Equivalence, Bisimulation and Simulation

- Universal Fragment of CTL^*

Trace, bisimulation and simulation equivalence



Similar but not bisimilar



$TS_{left} \simeq TS_{right}$ but $TS_{left} \not\sim TS_{right}$

Terminal states and determinism

For transition systems TS_1 and TS_2 over AP :

- If TS_1 has no terminal states:

$$TS_1 \preceq TS_2 \text{ implies } \text{Traces}(TS_1) \subseteq \text{Traces}(TS_2)$$

- If TS_1 is AP -deterministic:

$$TS_1 \simeq TS_2 \text{ iff } \text{Traces}(TS_1) = \text{Traces}(TS_2) \text{ iff } TS_1 \sim TS_2$$

- $TS = (S, Act, \rightarrow, I, AP, L)$ is **AP -deterministic** if:

1. for $A \subseteq AP$: $|I \cap \{s \mid L(s) = A\}| \leq 1$, and
2. $s \xrightarrow{\alpha} s'$ and $s \xrightarrow{\alpha} s''$ and $L(s') = L(s'')$ implies $s' = s''$

Overview Lecture #24

- Simulation Order
- Simulation Equivalence
- Comparing Trace Equivalence, Bisimulation and Simulation

⇒ Universal Fragment of CTL*

Universal fragment of CTL^{*}

\forall CTL^{*} *state-formulas* are formed according to:

$$\Phi ::= \text{true} \mid \text{false} \mid a \mid \neg a \mid \Phi_1 \wedge \Phi_2 \mid \Phi_1 \vee \Phi_2 \mid \forall \varphi$$

where $a \in AP$ and φ is a path-formula

\forall CTL^{*} *path-formulas* are formed according to:

$$\varphi ::= \Phi \mid \bigcirc \varphi \mid \varphi_1 \wedge \varphi_2 \mid \varphi_1 \vee \varphi_2 \mid \varphi_1 \mathsf{U} \varphi_2 \mid \varphi_1 \mathsf{R} \varphi_2$$

where Φ is a state-formula, and φ, φ_1 and φ_2 are path-formulas

in \forall CTL, the only path operators are $\bigcirc \Phi, \Phi_1 \mathsf{U} \Phi_2$ and $\Phi_1 \mathsf{R} \Phi_2$

Universal CTL* contains LTL

For every LTL formula there exists an equivalent \forall CTL* formula

Simulation order and \forall CTL^{*}

Let TS be a finite transition system (without terminal states) and s, s' states in TS .

The following statements are equivalent:

- (1) $s \preceq_{TS} s'$
- (2) for all \forall CTL^{*}-formulas Φ : $s' \models \Phi$ implies $s \models \Phi$
- (3) for all \forall CTL-formulas Φ : $s' \models \Phi$ implies $s \models \Phi$

proof is carried out in three steps: (1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (1)

Example

Existential fragment of CTL^{*}

\exists CTL^{*} *state-formulas* are formed according to:

$$\Phi ::= \text{true} \mid \text{false} \mid a \mid \neg a \mid \Phi_1 \wedge \Phi_2 \mid \Phi_1 \vee \Phi_2 \mid \exists \varphi$$

where $a \in AP$ and φ is a path-formula

\exists CTL^{*} *path-formulas* are formed according to:

$$\varphi ::= \Phi \mid \bigcirc \varphi \mid \varphi_1 \wedge \varphi_2 \mid \varphi_1 \vee \varphi_2 \mid \varphi_1 \mathsf{U} \varphi_2 \mid \varphi_1 \mathsf{R} \varphi_2$$

where Φ is a state-formula, and φ, φ_1 and φ_2 are path-formulas

in \exists CTL, the only path operators are $\bigcirc \Phi, \Phi_1 \mathsf{U} \Phi_2$ and $\Phi_1 \mathsf{R} \Phi_2$

Simulation order and \exists CTL^{*}

Let TS be a finite transition system (without terminal states) and s, s' states in TS .

The following statements are equivalent:

- (1) $s \preceq_{TS} s'$
- (2) for all \exists CTL^{*}-formulas Φ : $s \models \Phi$ implies $s' \models \Phi$
- (3) for all \exists CTL-formulas Φ : $s \models \Phi$ implies $s' \models \Phi$

\simeq , \forall CTL*, and \exists CTL* equivalence

For finite transition system TS without terminal states:

$$\simeq_{TS} = \equiv_{\forall\text{CTL}^*} = \equiv_{\forall\text{CTL}} = \equiv_{\exists\text{CTL}^*} = \equiv_{\exists\text{CTL}}$$

Overview implementation relations

	bisimulation equivalence	simulation order	trace equivalence
preservation of temporal-logical properties	CTL* CTL	\forall CTL*/ \exists CTL* \forall CTL/ \exists CTL	LTL (LT properties)
checking equivalence	PTIME	PTIME	PSPACE-complete
graph minimization	PTIME $\mathcal{O}(M \log S)$	PTIME $\mathcal{O}(M \cdot S)$	—