
Simulation Preorder
Lecture #24 of Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

July 3, 2007

c© JPK

Model checking

Overview Lecture #24

⇒ Simulation Order

• Simulation Equivalence

• Comparing Trace Equivalence, Bisimulation and Simulation

• Universal Fragment of CTL∗

c© JPK 1

Model checking

Simulation order

Let TSi = (Si, Acti,→i, Ii, AP, Li), i=1, 2, be transition systems.

A simulation for (TS1, TS2) is a binary relation R ⊆ S1 × S2 such that:

1. ∀s1 ∈ I1 ∃s2 ∈ I2. (s1, s2) ∈ R

2. for all (s1, s2) ∈ R it holds:

(a) L1(s1) = L2(s2)

(b) if s′1 ∈ Post(s1) then there exists s′2 ∈ Post(s2) with (s′1, s
′
2) ∈ R

TS1 � TS2 iff there exists a simulation R for (TS1, TS2)

c© JPK 2

Model checking

Simulation order

s1 −→ s′1 s1 −→ s′1
R can be completed to R R
s2 s2 −→ s′2

but not necessarily:

s1 s1 −→ s′1
R can be completed to R R
s2 −→ s′2 s2 −→ s′2

c© JPK 3

Model checking

Example

c© JPK 4

Model checking

The use of simulations

• As a notion of correctness for refinement

– TS � TS′ whenever TS is obtained by deleting transitions from TS ′

– e.g., nondeterminism is resolved by choosing one alternative

• As a notion of correctness for abstraction

– abstract from concrete values of certain program or control variables
– use instead abstract values or ignore their value completely
– used in e.g., software model checking of C and Java
– formalised by an abstraction function f that maps s onto its abstraction f(s)

c© JPK 5

Model checking

Abstraction function

• f : S → Ŝ is an abstraction function if f(s) = f(s′) ⇒ L(s) = L(s′)

– S is a set of concrete states and bS a set of abstract states, i.e. |bS| << |S|

• Abstraction functions are useful for:

– data abstraction: abstract from values of program or control variables

f : concrete data domain → abstract data domain

– predicate abstraction: use predicates over the program variables

f : state → valuations of the predicates

– localization reduction: partition program variables into visible and invisible

f : all variables → visible variables

c© JPK 6

Model checking

Abstract transition system
For TS = (S, Act,→, I, AP, L) and abstraction function f : S → Ŝ let:

TSf = (Ŝ, Act,→f , If , AP, Lf), the abstraction of TS under f

where

• →f is defined by:
s α−−→ s′

f(s) α−−→f f(s′)

• If = { f(s) | s ∈ I }

• Lf(f(s)) = L(s); for s ∈ Ŝ \ f(S), labeling is undefined

R = { (s, f(s)) | s ∈ S } is a simulation for (TS, TSf)

c© JPK 7

Model checking

Simulation order on paths
Whenever we have:

s0 −→ s1 −→ s2 −→ s3 −→ s4

R
t0

this can be completed to

s0 −→ s1 −→ s2 −→ s3 −→ s4

R R R R R
t0 −→ t1 −→ t2 −→ t3 −→ t4

the proof of this fact is by induction on the length of the path

note that a finite path may be simulated by a prefix of an infinite path!

c© JPK 8

Model checking

Simulation is a pre-order

� is a preorder, i.e., reflexive and transitive

c© JPK 9

Model checking

Overview Lecture #24

• Simulation Order

⇒ Simulation Equivalence

• Comparing Trace Equivalence, Bisimulation and Simulation

• Universal Fragment of CTL∗

c© JPK 10

Model checking

Simulation equivalence

TS1 and TS2 are simulation equivalent, denoted TS1 	 TS2,

if TS1 � TS2 and TS2 � TS1

c© JPK 11

Model checking

Simulation order on states
A simulation for TS = (S, Act,→, I, AP, L) is a binary relation R ⊆ S×S
such that for all (s1, s2) ∈ R:

1. L(s1) = L(s2)

2. if s′1 ∈ Post(s1) then there exists an s′2 ∈ Post(s2) with (s′1, s
′
2) ∈ R

s1 is simulated by s2, denoted by s1 �TS s2,
if there exists a simulation R for TS with (s1, s2) ∈ R

s1 �TS s2 if and only if TSs1 � TSs2

s1 	TS s2 if and only if s1 �TS s2 and s2 �TS s1

c© JPK 12

Model checking

Simulation quotient transition system

For TS = (S, Act,→, I, AP, L) and simulation equivalence 	 ⊆ S ×S let

TS/	 = (S′, { τ },→′, I ′, AP, L′), the quotient of TS under 	

where

• S′ = S/	= { [s]� | s ∈ S } and I ′ = { [s]� | s ∈ I }

• →′ is defined by:
s α−−→ s′

[s]�
τ−→′ [s′]�

• L′([s]�) = L(s)

lemma: TS � TS/� ; proof not straightforward!

c© JPK 13

Model checking

Overview Lecture #24

• Simulation Order

• Simulation Equivalence

⇒ Comparing Trace Equivalence, Bisimulation and Simulation

• Universal Fragment of CTL∗

c© JPK 14

Model checking

Trace, bisimulation and simulation equivalence

simulation equivalence

bisimulation equivalence

trace equivalence
Traces(TS1) = Traces(TS2)

TS1 ∼ TS2

finite trace inclusion

finite trace equivalence
Tracesfin(TS1) = Tracesfin(TS2)

Tracesfin(TS1) ⊆ Tracesfin(TS2)

TS1 � TS2

TS1 � TS2

simulation order trace inclusion
Traces(TS1) ⊆ Traces(TS2)

c© JPK 15

Model checking

Similar but not bisimilar

s1 { a }

s2 ∅ s3 ∅

s4 { b } s5 { c }

t1 { a }

t2 ∅

t3 { b } t4 { c }

TSleft � TSright but TSleft 	∼ TSright

c© JPK 16

Model checking

Terminal states and determinism

For transition systems TS1 and TS2 over AP:

• If TS1 has no terminal states:

TS1 � TS2 implies Traces(TS1) ⊆ Traces(TS2)

• If TS1 is AP-deterministic:

TS1 � TS2 iff Traces(TS1) = Traces(TS2) iff TS1 ∼ TS2

• TS = (S, Act,→, I, AP, L) is AP-deterministic if:

1. for A ⊆ AP: | I ∩ { s | L(s) = A }| � 1, and
2. s α−→ s′ and s α−→ s′′ and L(s′) = L(s′′) implies s′ = s′′

c© JPK 17

Model checking

Overview Lecture #24

• Simulation Order

• Simulation Equivalence

• Comparing Trace Equivalence, Bisimulation and Simulation

⇒ Universal Fragment of CTL∗

c© JPK 18

Model checking

Universal fragment of CTL∗

∀CTL∗ state-formulas are formed according to:

Φ ::= true
∣∣∣ false

∣∣∣ a
∣∣∣ ¬a

∣∣∣ Φ1 ∧Φ2

∣∣∣ Φ1 ∨ Φ2

∣∣∣ ∀ϕ

where a ∈ AP and ϕ is a path-formula

∀CTL∗ path-formulas are formed according to:

ϕ ::= Φ
∣∣∣ © ϕ

∣∣∣ ϕ1∧ϕ2

∣∣∣ ϕ1 ∨ ϕ2

∣∣∣ ϕ1 Uϕ2

∣∣∣ ϕ1 Rϕ2

where Φ is a state-formula, and ϕ, ϕ1 and ϕ2 are path-formulas

in ∀CTL, the only path operators are ©Φ, Φ1 U Φ2 and Φ1 R Φ2

c© JPK 19

Model checking

Universal CTL∗ contains LTL

For every LTL formula there exists an equivalent ∀CTL∗ formula

c© JPK 20

Model checking

Simulation order and ∀CTL∗

Let TS be a finite transition system (without terminal states) and s, s ′ states in TS.

The following statements are equivalent:

(1) s �TS s′

(2) for all ∀CTL∗-formulas Φ: s′ |= Φ implies s |= Φ

(3) for all ∀CTL-formulas Φ: s′ |= Φ implies s |= Φ

proof is carried out in three steps: (1) ⇒ (2) ⇒ (3) ⇒ (1)

c© JPK 21

Model checking

Example

c© JPK 22

Model checking

Existential fragment of CTL∗

∃CTL∗ state-formulas are formed according to:

Φ ::= true
∣∣∣ false

∣∣∣ a
∣∣∣ ¬a

∣∣∣ Φ1 ∧Φ2

∣∣∣ Φ1 ∨ Φ2

∣∣∣ ∃ϕ

where a ∈ AP and ϕ is a path-formula

∃CTL∗ path-formulas are formed according to:

ϕ ::= Φ
∣∣∣ © ϕ

∣∣∣ ϕ1∧ϕ2

∣∣∣ ϕ1 ∨ ϕ2

∣∣∣ ϕ1 Uϕ2

∣∣∣ ϕ1 Rϕ2

where Φ is a state-formula, and ϕ, ϕ1 and ϕ2 are path-formulas

in ∃CTL, the only path operators are ©Φ, Φ1 U Φ2 and Φ1 R Φ2

c© JPK 23

Model checking

Simulation order and ∃CTL∗

Let TS be a finite transition system (without terminal states) and s, s ′ states in TS.

The following statements are equivalent:

(1) s �TS s′

(2) for all ∃CTL∗-formulas Φ: s |= Φ implies s′ |= Φ

(3) for all ∃CTL-formulas Φ: s |= Φ implies s′ |= Φ

c© JPK 24

Model checking

	, ∀CTL∗, and ∃CTL∗ equivalence

For finite transition system TS without terminal states:

	TS = ≡∀CTL∗ = ≡∀CTL = ≡∃CTL∗ = ≡∃CTL

c© JPK 25

Model checking

Overview implementation relations

bisimulation simulation trace
equivalence order equivalence

preservation of CTL∗ ∀CTL∗/∃CTL∗ LTL
temporal-logical CTL ∀CTL/∃CTL (LT properties)

properties

checking PTIME PTIME PSPACE-
equivalence complete

graph PTIME PTIME —
minimization O(M log |S|) O(M ·|S|)

c© JPK 26

