© JPK

Simulation Preorder
Lecture #24 of Model Checking

Joost-Pieter Katoen
Lehrstuhl 2: Software Modeling & Verification

E-mail: kat oen@s. r wt h- aachen. de

July 3, 2007



Model checking

Overview Lecture #24

= Simulation Order
e Simulation Equivalence
e Comparing Trace Equivalence, Bisimulation and Simulation

e Universal Fragment of CTL*

© JPK 1



Model checking

Simulation order

Let TS; = (5;, Act;,, —;, I;, AP, L;), i=1, 2, be transition systems.

A simulation for (TS, TS,) is a binary relation R C S; x S5 such that:
1. Vs € I{dsy € Is. (81, 82) ER

2. forall (s1,s2) € R it holds:
(@) Li(s1) = La(s2)

(b) if s} € Post(sq) then there exists si, € Post(ss) with (s7,s,) € R
1 2 122

TS; <X TS, iff there exists a simulation R for (TS, TS,)

© JPK



Model checking

but not necessarily:

S1

R

So  — S5

Simulation order

can be completed to

can be completed to

© JPK



Model checking

Example

© JPK 4



Model checking

The use of simulations

e As a notion of correctness for refinement

— TS < TS’ whenever TS is obtained by deleting transitions from TS’
— e.g., nondeterminism is resolved by choosing one alternative

e As a notion of correctness for abstraction

— abstract from concrete values of certain program or control variables

— use instead abstract values or ignore their value completely

— used in e.g., software model checking of Cand Java

— formalised by an abstraction function f that maps s onto its abstraction f(s)

© JPK 5



Model checking

Abstraction function

AN

e f:5 — Sisan abstraction function if f(s) = f(s’) = L(s) = L(s')
— S is a set of concrete states and S a set of abstract states, i.e. |§ | << |S]
e Abstraction functions are useful for:
— data abstraction: abstract from values of program or control variables
f : concrete data domain — abstract data domain
— predicate abstraction: use predicates over the program variables
f : state — valuations of the predicates
— localization reduction: partition program variables into visible and invisible

f : all variables — visible variables

© JPK 6



Model checking

Abstract transition system
For TS = (S, Act, —, I, AP, L) and abstraction function f : S — S let:

TS, = (§, Act,—¢, I¢+,AP,L;), the abstraction of TS under f

where
s 254
o — Is defined by:
f(s) == f(s")

o Ir={f(s)|sel}

e L;(f(s))=L(s), forse S\ £(9), labeling is undefined

R ={(s,f(s))| s € S}isasimulation for (TS, TSy)

© JPK .



Model checking

Simulation order on paths
Whenever we have:

S0 — S1 — S92 — S3 — S4......

R
to

this can be completed to
S9 — 81 — 82 — 83 — S4......
R R R R R
to — 1 — to — t3g — tlg......
the proof of this fact is by induction on the length of the path

note that a finite path may be simulated by a prefix of an infinite path!

© JPK



Model checking

Simulation is a pre-order

<'is a preorder, i.e., reflexive and transitive

© JPK 9



Model checking

Overview Lecture #24

e Simulation Order
= Simulation Equivalence
e Comparing Trace Equivalence, Bisimulation and Simulation

e Universal Fragment of CTL*

© JPK 10



Model checking

Simulation equivalence

TS, and TS, are simulation equivalent, denoted TS ~ TS,
If TS <X TS, and TS, < TS,

© JPK 11



Model checking

Simulation order on states
A simulation for TS = (S, Act, —, I, AP, L) isa binary relation R C Sx S

such that for all (s1, s2) € R:
2. if s§ € Post(s;) then there exists an s/, € Post(ss) with (s7,s5) € R

s1 Is simulated by s», denoted by s; <15 s9,
if there exists a simulation R for TS with (s1, s2) € R

s1 =1s s2 Ifandonlyif TS; =< TS,

s1 ~rs S ifandonlyif s; =<is ssand s <i5 sy

© JPK 12



Model checking

Simulation quotient transition system

For TS = (S, Act, —, I, AP, L) and simulation equivalence ~ C S x S let
TS/ ~= (8 {r},—',I')AP, L"), the quotient of TS under ~

where

o '=5/~= {[sl~|seS}tandI'={[s|~|sel}

« /
S—S

5= 5]~

e —'is defined by:

o L'([s]~) = L(s)

lemma: TS ~ TS/~ ; proof not straightforward!

© JPK 13



Model checking

Overview Lecture #24

e Simulation Order
e Simulation Equivalence
= Comparing Trace Equivalence, Bisimulation and Simulation

e Universal Fragment of CTL*

© JPK 14



Model checking

Trace, bisimulation and simulation equivalence

bisimulation equivalence

/ TSl - TS2 \

simulation equivalence trace equivalence
TS) =TS9 Traces(TS1) = Traces(TSo)

\ finite trace equivalenC/

Traces g, (TSq) = Traces fin (TS9)

simulation order trace inclusion
TS1 X TSy Traces(TSq) C Traces(TS9)

\ finite trace inclusion /

Traces ﬁn(Tsl) C Tracesg, (TS9)

© JPK 15



Model checking

Similar but not bisimilar

(s1){a} (t){a}
(52, (53)2 OF

saj{b} (s5){c} (ts){b} (t){c}

TSleft =~ TSright but TSleft ’7(‘ TSrz'ght

© JPK 16



Model checking

Terminal states and determinism
For transition systems TS; and TS, over AP:

e If TS; has no terminal states:

TS; <X TSy implies Traces(TS;) C Traces(TS,)

o If TS; Is AP-deterministic:

TS, ~ TSy iff Traces(TS;) = Traces(TS,) iff TS; ~ TS,

e TS = (S,Act,—, I, AP, L) is AP-deterministic if:

1. for ACAP: |IN{s|L(s)=A} < 1,and
2. s> s"and s = s" and L(s") = L(s") implies s’ = 5"

© JPK 17



Model checking

Overview Lecture #24

e Simulation Order
e Simulation Equivalence
e Comparing Trace Equivalence, Bisimulation and Simulation

= Universal Fragment of CTL*

© JPK 18



Model checking

Universal fragment of CTL*

VCTL" state-formulas are formed according to:
® ::= true ‘ false | a | —a ‘ d,; N Dy | &, Vv P | Vo

where a € AP and ¢ Is a path-formula

VCTL" path-formulas are formed according to:

p = @ | O | 01\ P2 | ©1 V P2 | 01 U o ‘ ©1 R 9

where @ is a state-formula, and ¢, ¢, and ¢, are path-formulas

in VCTL, the only path operators are (O®, &, U $, and &, R &,

© JPK 19



Model checking

Universal CTL* contains LTL

For every LTL formula there exists an equivalent VCTL™ formula

© JPK

20



Model checking

Simulation order and VCTL"

Let TS be a finite transition system (without terminal states) and s, s’ states in TS.
The following statements are equivalent:
1) s =15 &
(2) for all VCTL*-formulas ®: s’ = ® implies s = ®
(3) for all VCTL-formulas ®: s’ = ® implies s = ®

proof is carried out in three steps: (1) = (2) = (3) = (1)

© JPK 21



Model checking

Example

© JPK 22



Model checking

Existential fragment of CTL*

JCTL" state-formulas are formed according to:
® ::= true ‘ false | a | —a ‘ d,; N Dy | &, Vv P | Jp

where a € AP and ¢ Is a path-formula

JCTL™ path-formulas are formed according to:

p = @ | O | 01\ P2 | ©1 V P2 | 01 U o ‘ ©1 R 9

where @ is a state-formula, and ¢, ¢, and ¢, are path-formulas

in ACTL, the only path operators are (O®, &, U $, and &, R &,

© JPK 23



Model checking

Simulation order and 3CTL"

Let TS be a finite transition system (without terminal states) and s, s’ states in TS.
The following statements are equivalent:
1) s =7s s
(2) for all 3CTL*-formulas ®: s = ® implies s’ |= ®
(3) for all ICTL-formulas ®: s |= ® implies s’ |= ®

© JPK 24



Model checking

~, VCTL", and 3CTL" equivalence

For finite transition system TS without terminal states:

=Ts = =yCTL"* — =VvCTL = =3CTL* = =3CTL

© JPK

25



Model checking

Overview implementation relations

bisimulation simulation trace
equivalence order equivalence
preservation of CTL* VCTL*/3CTL" LTL
temporal-logical CTL VCTL/3ACTL (LT properties)
properties
checking PTIME PTIME PSPACE-
equivalence complete
graph PTIME PTIME —
minimization O(M log |S]) O(M-|S|)

© JPK

26



