
Concurrency
Lecture #3 of Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling and Verification

E-mail: katoen@cs.rwth-aachen.de

April 10, 2007

c© JPK

#3: Concurrency Model checking

Overview Lecture #3

⇒ Concurrency

– The interleaving paradigm

• Communication principles

– Shared variable “communication”
– Handshaking
– Synchronous communication

• Channel systems

• The state-space explosion problem

c© JPK 1

#3: Concurrency Model checking

Concurrent systems

• Transition systems

– suited for modeling sequential data-dependent systems
– and for modeling sequential hardware circuits

• How about concurrent systems?

– threading
– distributed algorithms and communication protocols

• Can we model:

– threading without communication?
– synchronous communication?
– synchronous composition of hardware?

c© JPK 2

#3: Concurrency Model checking

Interleaving

• Abstract from decomposition of system in components

• Actions of independent components are merged or “interleaved”

– a single processor is available
– on which the actions of the processes are interlocked

• No assumptions are made on the order of processes

– possible orders for non-terminating independent processes P and Q:

P Q P Q P Q Q Q P . . .

P P Q P P Q P P Q . . .

P Q P P Q P P P Q . . .

– assumption: there is a scheduler with an a priori unknown strategy

c© JPK 3

#3: Concurrency Model checking

Interleaving

• Justification for interleaving:

the effect of concurrently executed, independent actions α and β equals
the effect when α and β are successively executed in arbitrary order

• Symbolically this is stated as:

Effect(α |||β, η) = Effect((α ; β) + (β ; α), η)

– ||| stands for the (binary) interleaving operator
– “;” stands for sequential execution, and “+” for non-deterministic choice

c© JPK 4

#3: Concurrency Model checking

Interleaving

x := x + 1
︸ ︷︷ ︸

=α

||| y := y − 2
︸ ︷︷ ︸

=β

x=0

x=1

α |||

y=7

y=5

β = x=1, y=7

x=0, y=7

x=0, y=5

x=1, y=5

α

β α

β

c© JPK 5

#3: Concurrency Model checking

Interleaving of transition systems

Let TSi = (Si, Acti,→i, Ii, APi, Li) i=1, 2, be two transition systems

Transition system

TS1 |||TS2 = (S1 × S2, Act1 � Act2,→, I1 × I2, AP1 � AP2, L)

where L(〈s1, s2〉) = L1(s1) ∪ L2(s2) and the transition relation → is
defined by the rules:

s1
α−−→1 s′1

〈s1, s2〉 α−−→〈s′1, s2〉
and

s2
α−−→2 s′2

〈s1, s2〉 α−−→ 〈s1, s
′
2〉

c© JPK 6

#3: Concurrency Model checking

What are program graphs?

A program graph PG over set Var of typed variables is a tuple

(Loc, Act, Effect,−→, Loc0, g0) where

• Loc is a set of locations with initial locations Loc0 ⊆ Loc

• Effect : Act × Eval(Var) → Eval(Var) is the effect function

• −→ ⊆ Loc × (Cond(Var)
︸ ︷︷ ︸

Boolean conditions overVar

×Act) × Loc, transition relation

• g0 ∈ Cond(Var) is the initial condition.

Notation: �
g:α−−→ �′ denotes

`
�, g, α, �′

´ ∈ −→

c© JPK 7

#3: Concurrency Model checking

Beverage vending machine

• Loc = { start , select } with Loc0 = { start }

• Act = { bget , sget , coin, ret coin, refill }

• Var = {nsprite, nbeer } with domain { 0, 1, . . . ,max }

•
Effect(coin, η) = η

Effect(ret coin, η) = η

Effect(sget, η) = η[nsprite := nsprite−1]

Effect(bget, η) = η[nbeer := nbeer−1]

Effect(refill , η) = [nsprite := max , nbeer := max]

• g0 = (nsprite = max ∧ nbeer = max)

c© JPK 8

#3: Concurrency Model checking

From program graphs to transition systems

• Basic strategy: unfolding

– state = location (current control) � + data valuation η

– initial state = initial location satisfying the initial condition g0

• Propositions and labeling

– propositions: “at �” and “x ∈ D” for D ⊆ dom(x)

– 〈�, η〉 is labeled with “at �” and all conditions that hold in η

• �
g:α−−−→ �′ and g holds in η then 〈�, η〉 α−−→〈�′, Effect(α, η)〉

c© JPK 9

#3: Concurrency Model checking

Transition systems for program graphs
The transition system TS(PG) of program graph

PG = (Loc, Act, Effect,−→, Loc0, g0)

over set Var of variables is the tuple (S, Act,−→, I, AP, L) where

• S = Loc × Eval(Var)

• −→⊆ S × Act × S is defined by the rule:
�

g:α−−−→ �′ ∧ η |= g

〈�, η〉 α−−→〈�′, Effect(α, η)〉

• I = {〈�, η〉 | � ∈ Loc0, η |= g0}

• AP = Loc∪Cond(Var) and L(〈�, η〉) = {�}∪ {g ∈ Cond(Var) | η |= g}.

c© JPK 10

#3: Concurrency Model checking

Interleaving of program graphs

For program graphs PG1 (on Var1) and PG2 (on Var2) without shared
variables, i.e., Var1 ∩ Var2 = ∅,

TS(PG1) ||| TS(PG2)

faithfully describes the concurrent behavior of PG1 and PG2

what if they have variables in common?

c© JPK 11

#3: Concurrency Model checking

Shared variable communication

x := 2·x︸ ︷︷ ︸

action α

||| x := x + 1
︸ ︷︷ ︸

action β

with initially x = 3

x=3

x=6

α |||

x=3

x=4

β = x=6, x=3

x=3, x=3

x=3, x=4

x=6, x=4

α

β α

β

〈x=6, x=4〉 is an inconsistent state!

⇒ no faithful model of the concurrent execution of α and β

Idea: first unfold, then interleave

c© JPK 12

#3: Concurrency Model checking

Interleaving of program graphs

Let PGi = (Loci, Acti, Effecti,−→ i, Loc0,i, g0,i) over variables Vari.

Program graph PG1 |||PG2 over Var1 ∪ Var2 is defined by:

(Loc1 × Loc2, Act1 � Act2, Effect,−→, Loc0,1 × Loc0,2, g0,1 ∧ g0,2)

where −→ is defined by the inference rules:

�1
g:α−−−→1 �′1

〈�1, �2〉 g:α−−−→ 〈�′1, �2〉
and

�2
g:α−−−→2 �′2

〈�1, �2〉 g:α−−−→ 〈�1, �′2〉

and Effect(α, η) = Effecti(α, η) if α ∈ Acti.

c© JPK 13

#3: Concurrency Model checking

Example

x := 2·x︸ ︷︷ ︸

action α

||| x := x + 1
︸ ︷︷ ︸

action β

with initially x = 3

note that TS(PG1) ||| TS(PG2) �= TS(PG1 ||| PG2)

c© JPK 14

#3: Concurrency Model checking

On atomicity

x := x + 1; y := 2x + 1; z := y div x
︸ ︷︷ ︸

non-atomic

||| x := 0

Possible execution fragment:

〈x = 11〉 x:=x+1−−−−−−→〈x = 12〉 y:=2x+1−−−−−−→〈x = 12〉 x:=0−−−−→〈x = 0〉 z:=y/x−−−−−→†. . .

〈x := x + 1; y := 2x + 1; z := y div x〉
︸ ︷︷ ︸

atomic

||| x := 0

Either the left process or the right process is completed first:

〈x = 11〉 x:=x+1−−−−−→〈x = 12〉 y:=2x+1−−−−−→〈x = 12〉 z:=y/x−−−−−→〈x = 12〉 x:=0−−−→〈x = 0〉

c© JPK 15

#3: Concurrency Model checking

Peterson’s mutual exclusion algorithm

P1 loop forever
... (* non-critical actions *)

〈b1 := true; x := 2〉; (* request *)

wait until (x = 1 ∨ ¬b2)

do critical section od

b1 := false (* release *)
... (* non-critical actions *)

end loop

bi is true if and only if process Pi is waiting or in critical section
if both processes want to enter their critical section, x decides who gets access

c© JPK 16

#3: Concurrency Model checking

Banking system

Person Left behaves as follows:

while true {
.

nc : 〈b1, x = true, 2; 〉
wt : wait until(x == 1 || ¬ b2) {
cs : . . . @account . . .}

b1 = false;

.

}

Person Right behaves as follows:

while true {
.

nc : 〈b2, x = true, 1; 〉
wt : wait until(x == 2 || ¬ b1) {
cs : . . . @account . . .}

b2 = false;

.

}

Can we guarantee that only one person at a time has access to the bank account?

c© JPK 17

#3: Concurrency Model checking

Program graph representation

c© JPK 18

#3: Concurrency Model checking

Is the banking system safe?
x == 1

b1 = 1

b1 = 0

b2 = 0

x = 2

b1 = 1 b2 = 1

x = 1

b2 = 1

x = 1

b1 = 1

x = 2

b2 = 0
b1 = 0

x = 1

b1 = 1

x = 2

b2 = 1

x == 1 x == 2

x == 2

Manually inspect whether two may have access to the account simultaneously:No

c© JPK 19

#3: Concurrency Model checking

Banking system with non-atomic assignment

Person Left behaves as follows:

while true {
.

nc : x = 2;

rq : b1 = true;

wt : wait until(x == 1 || ¬ b2) {
cs : . . . @account . . .}

b1 = false;

.

}

Person Right behaves as follows:

while true {
.

nc : x = 1;

rq : b2 = true;

wt : wait until(x == 2 || ¬ b1) {
cs : . . . @account . . .}

b2 = false;

.

}

c© JPK 20

#3: Concurrency Model checking

On atomicity again
Assume that the location inbetween the assignments x := . . . and bi :=
true in program graph PGi is called rqi. Possible state sequence:

〈nc1, nc2, x = 1, b1 = false, b2 = false〉
〈nc1, rq2, x = 1, b1 = false, b2 = false〉
〈rq1, rq2, x = 2, b1 = false, b2 = false〉
〈wt1, rq2, x = 2, b1 = true, b2 = false〉
〈cs1, rq2, x = 2, b1 = true, b2 = false〉
〈cs1, wt2, x = 2, b1 = true, b2 = true〉
〈cs1, cs2, x = 2, b1 = true, b2 = true〉!

violation of the mutual exclusion property

c© JPK 21

#3: Concurrency Model checking

Parallelism and handshaking

• Concurrent processes run truly in parallel

• To obtain cooperation, some interaction mechanism is needed

• If processes are distributed there is no shared memory

⇒ Message passing

– synchronous message passing (= handshaking)
– asynchronous message passing (= channel communication)

c© JPK 22

#3: Concurrency Model checking

Handshaking

• Concurrent processes interact by synchronous message passing

– processes execute synchronized actions together
– that is, in interaction both processes need to participate at the same time
– the interacting processes “shake hands”

• Abstract from information that is exhanged

• H is a set of handshake actions

– actions outside H are independent and are interleaved
– actions in H need to be synchronized

c© JPK 23

#3: Concurrency Model checking

Handshaking

Let TSi = (Si, Acti,→i, Ii, APi, Li), i=1, 2 and H ⊆ Act1 ∩ Act2

TS1 ‖H TS2 = (S1 × S2, Act1 ∪ Act2,→, I1 × I2, AP1 � AP2, L)

where L(〈s1, s2〉) = L1(s1) ∪ L2(s2) and with → defined by:

• s1
α−−→1 s′1

〈s1, s2〉 α−−→ 〈s′1, s2〉
s2

α−−→2 s′2
〈s1, s2〉 α−−→ 〈s1, s

′
2〉

interleaving for α
∈ H

• s1
α−−→1 s′1 ∧ s2

α−−→2 s′2
〈s1, s2〉 α−−→ 〈s′1, s′2〉

handshaking for α ∈ H

note that TS1 ‖H TS2 = TS1 ‖H TS2 but (TS1 ‖H1
TS2) ‖H2

TS3 �= TS1 ‖H1
(TS2 ‖H2

TS3)

c© JPK 24

#3: Concurrency Model checking

A booking system

0

1

scanstore

0

1

storeprt cmd

0

1

prt cmdprint

BCR ‖ BP ‖ Printer

‖ is a shorthand for ‖H with H = Act1 ∩ Act2

c© JPK 25

#3: Concurrency Model checking

The parallel composition

100 000 001

101

010

110 111 011scan print print scan

store print
prt cmd scan

print store
scan prt cmd

c© JPK 26

#3: Concurrency Model checking

Pairwise handshaking

TS1‖ . . . ‖TSn for Hi,j = Acti ∩ Actj with Hi,j ∩ Actk = ∅ for k /∈ { i, j }

State space of TS1‖ . . . ‖TSn is the Cartesian product of those of TSi

• for α ∈ Acti \
“ S

0<j�n
i �=j

Hi,j

”
and 0 < i � n:

si
α−→ i s

′
i

〈s1, . . . , si, . . . , sn〉 α−→ 〈s1, . . . , s′
i, . . . sn〉

• for α ∈ Hi,j and 0 < i < j � n:

si
α−→ i s

′
i ∧ sj

α−→ j s
′
j

〈s1, . . . , si, . . . , sj, . . . , sn〉 α−→ 〈s1, . . . , s
′
i, . . . , s

′
j, . . . , sn〉

c© JPK 27

#3: Concurrency Model checking

Synchronous parallelism

Let TSi = (Si, Act,→i, Ii, APi, Li) and Act×Act → Act, (α, β) → α ∗β

TS1 ⊗ TS2 = (S1 × S2, Act,→, I1 × I2, AP1 � AP2, L)

with L as defined before and → is defined by the following rule:

s1
α−−→ 1 s′1 ∧ s2

β−−→ 2 s′2
〈s1, s2〉 α∗β−−−→ 〈s′1, s′2〉

typically used for synchronous hardware circuits, cf. next example

c© JPK 28

#3: Concurrency Model checking

r1
NOT

y
OR

r2

y′x

0

1

00 01

10 11

TS2 :TS1 :

000 100

010

101 001

111 011

110

TS1 ⊗ TS2:

c© JPK 29

