© JPK

Concurrency
Lecture #3 of Model Checking

Joost-Pieter Katoen
Lehrstuhl 2: Software Modeling and Verification

E-mail: kat oen@s. r wt h- aachen. de

April 10, 2007

#3. Concurrency

Model checking

Overview Lecture #3

= Concurrency

— The interleaving paradigm

e Communication principles

— Shared variable “communication”
— Handshaking
— Synchronous communication

e Channel systems

e The state-space explosion problem

© JPK

#3: Concurrency Model checking

Concurrent systems

e Transition systems
— suited for modeling sequential data-dependent systems
— and for modeling sequential hardware circuits
e How about concurrent systems?
— threading
— distributed algorithms and communication protocols
e Can we model:

— threading without communication?
— synchronous communication?
— synchronous composition of hardware?

© JPK 2

#3: Concurrency Model checking

Interleaving

e Abstract from decomposition of system in components

e Actions of independent components are merged or “interleaved”

— asingle processor is available
— on which the actions of the processes are interlocked

e No assumptions are made on the order of processes

— possible orders for non-terminating independent processes P and Q:

P Q P Q P Q Q@ Q P
P P Q P P Q P P Q
P Q P P Q P P P Q

— assumption: there is a scheduler with an a priori unknown strategy

© JPK 3

#3: Concurrency Model checking

Interleaving

¢ Justification for interleaving:

the effect of concurrently executed, independent actions « and 3 equals
the effect when o and 3 are successively executed in arbitrary order

e Symbolically this is stated as:

Effect(a||| B,m) = Effect((a; B8) + (8; a),n)

— ||| stands for the (binary) interleaving operator
— “” stands for sequential execution, and “+” for non-deterministic choice

© JPK 4

#3: Concurrency Model checking

Interleaving

© JPK 5

#3: Concurrency Model checking

Interleaving of transition systems

Let TS; = (5;,Act;, —;, I;, AP;, L;) i=1, 2, be two transition systems

Transition system
TSl ||| TSQ = (51 X SQ,ACtl I+ ACtQ, —, Il X IQ,APl I+ APQ, L)

where L((s1,s2)) = Li1(s1) U Lo(s2) and the transition relation — is
defined by the rules:

S1 i>1 8/1 and S92 i>2 8/2
<81,S2> i><33782> <81,S2> Bl <81,3/2>

© JPK 6

#3: Concurrency Model checking

What are program graphs?

A program graph PG over set Var of typed variables is a tuple
(Loc, Act, Effect, —, Locg, go) Where

e Loc is a set of locations with initial locations Locy C Loc

e Effect: Act x Eval(Var) — Eval(Var) is the effect function

e — C Locx (Cond(Var) xAct) x Loc, transition relation

v
Boolean conditions overVar

e go € Cond(Var) is the initial condition.

Notation: ¢ £ ¢’ denotes (¢, g, o, ¢') € —

© JPK 7

#3. Concurrency

Model checking

Beverage vending machine

e Loc = { start, select } with Locy = { start }

o Act = { bget, sget, coin, ret_coin, refill }

e Var = { nsprite, nbeer } with domain {0,1,..., mazx }
Effect(coin, n) = 7
Effect(ret_coin,n) = n
e Effect(sget, n) = n|nsprite := nsprite—1]
Effect(bget, n) = n[nbeer := nbeer—1]
Effect(refill, n) = [nsprite := max, nbeer := max]

e go = (nsprite = maxr A nbeer = mazx)

© JPK

#3: Concurrency Model checking

From program graphs to transition systems

e Basic strategy: unfolding

— state = location (current control) ¢ + data valuation
— initial state = initial location satisfying the initial condition g

e Propositions and labeling

— propositions: “at £” and “x € D” for D C dom(x)
— (¢, n) is labeled with “at £” and all conditions that hold in n

o (2%, ¢ and g holds in 7 then (¢, 1) -2 (¢, Effect(o,)

© JPK 9

#3: Concurrency Model checking

Transition systems for program graphs
The transition system TS(PG) of program graph

PG = (Loc, Act, Effect, —, Locy, go)
over set Var of variables is the tuple (S, Act,—, I, AP, L) where
e S =Loc x Eval(Var)

(200 A g

o — C S x Act x S is defined by the rule: Y
(¢,n) — (', Effect(a, n))

o I ={({,n)|¢eLocy,nk=go}

e AP = LocuUCond(Var)and L({¢,n)) = {¢}U{g € Cond(Var) | n = g}.

© JPK 10

#3: Concurrency Model checking

Interleaving of program graphs

For program graphs PG; (on Var,) and PG, (on Var,) without shared
variables, i.e., Var; N Vary, = &,

TS(PG,) [|| TS(PG2)

faithfully describes the concurrent behavior of PG, and PG,

what if they have variables in common?

© JPK 11

#3. Concurrency

Model checking

Shared variable communication

c:=2x ||| g:=x+1 withinitially z = 3
action « action 3

0%

|
04/@;:3, x:@\ﬁ

3 = [2=6,2=3 2=3, =4

b, x=0, x:M

(x=6, x=4) is an inconsistent state!

= no faithful model of the concurrent execution of « and 3

Idea: first unfold, then interleave

© JPK

12

#3: Concurrency Model checking

Interleaving of program graphs

Let PG, = (Loc,, Act;, Effect;, —;, Locy ;, go.;) Over variables Var,.

Program graph PG, ||| PG, over Var, U Var, is defined by:
(Locy x Locy, Act; W Act,, Effect, —, LoCg ;1 x LOCg 2, 90.1 A go.2)
where — is defined by the inference rules:

/1 L% f’ and (o L% f’
(01, La) —F= (07, La) (1, la) —F= (0, 05)

and Effect(a,n) = Effect;(a,n) if a € Act;.

© JPK 13

#3. Concurrency

Model checking

Example

=2z ||| g:=x+1 withinitially z =3
action o action s

note that TS(PGy) ||| TS(PG2) # TS(PGy ||| PG2)

© JPK

14

#3: Concurrency Model checking

On atomicity

r=x+Ly=2x+1lz:=ydive ||| 2:=0
non-atomic

Possible execution fragment:

(7= 11) —Z=2tb, o 19) L=20F1, 0 19y 220, (g =) 22U 4

(r:=x+Ly:=2x+1;2:=ydive) [|| z:=0
atomic

Either the left process or the right process is completed first:

(= 11) =24l (o — 19) L=20FL, (g — 12) ZEWE, 1 — 12) -==0, (g = 0)

© JPK 15

#3: Concurrency Model checking

Peterson’s mutual exclusion algorithm

P, loop forever

(* non-critical actions *)
(b :=true; = := 2); (* request *)
wait until (x =1 VvV —by)
do critical section od
b, := false (* release *)

(* non-critical actions *)

end loop

b, is true if and only if process P; is waiting or in critical section
if both processes want to enter their critical section, = decides who gets access

© JPK 16

#3: Concurrency Model checking

Banking system

Person Left behaves as follows: Person Right behaves as follows:
while true { while true {
nc : (b1, x = true, 2;) nc : (by, x = true, 1;)
wait until(x == 1|| = bs) { : wait until(z == 2 || =b7) {
cs : ... @account. ..} cs : ... @account . ..}
b, = false; by = false;
} }

Can we guarantee that only one person at a time has access to the bank account?

© JPK 17

#3. Concurrency

Model checking

Program graph representation

© JPK

18

#3: Concurrency Model checking

Is the banking system safe?

Manually inspect whether two may have access to the account simultaneously:No

© JPK 19

#3: Concurrency Model checking

Banking system with non-atomic assighment

Person Left behaves as follows: Person Right behaves as follows:
while true { while true {
nc: T = 2; nc: Tz = 1;
rq: b1 = true; rq : by = true;
wait until(z == 1| = bg) { : wait until(z == 2 || =b7) {
cs : ... @account. . .} cs : ... @account. ..}
b, = false; by = false;
} }

© JPK 20

#3. Concurrency

Model checking

(ney,
(neq,

<TQ17
<’wl€1,

On atomicity again
Assume that the location inbetween the assignments = := ... and b; :=
true in program graph PG,; is called rq;. Possible state sequence:

ncy,

rqz,
rqz,
rq2,

rq2,

wto,

CS9,

r =1,
r =1,
T = 2,
T = 2,
T = 2,
T = 2,
T = 2,

b, = false, by, = false

b, = false, by, = false

)
)
b, = false, by = false)
by = true, by = false)

)

by = true, by, = false
by =true, by =true)

by = true, by = true)!

violation of the mutual exclusion property

© JPK

21

#3: Concurrency Model checking

Parallelism and handshaking

e Concurrent processes run truly in parallel
e To obtain cooperation, some interaction mechanism is needed

e If processes are distributed there is no shared memory

= Message passing

— synchronous message passing (= handshaking)
— asynchronous message passing (= channel communication)

© JPK 22

#3: Concurrency Model checking

Handshaking

e Concurrent processes interact by synchronous message passing

— processes execute synchronized actions together

— that s, in interaction both processes need to participate at the same time
— the interacting processes “shake hands”

e Abstract from information that is exhanged

e H is a set of handshake actions

— actions outside H are independent and are interleaved
— actions in H need to be synchronized

© JPK 23

#3: Concurrency Model checking

Handshaking

Let TS, = (SZ',AC'[Z', —>,L',IZ',AP,L', Lz); ZZl, 2 and H C Act; N Acty

TS, HH TS, = (Sl X SQ,ACtl UACtQ,—>,Il X IQ,APl L‘UAPQ,L)

where L(<81, 82>) = Ll(Sl) U LQ(SQ) and with — defined by

« / « /
. A —| 27 72% _ interleaving for o & H
(s1,82) — (s7,52) (81, 82) — (81, 89)

(8% / « /
S1 —1 S AN SS9 —9 S .
o L 171 72 2 handshaking for o € H
(51,82) —— (57, 55)

note that TSy || TSg = TSy ||y TSz but (TSy [, TS2) |lm, TS3 # TSi1 ||y (TS2 |lm, TS3)

© JPK 24

#3. Concurrency

Model checking

store

Scan

A booking system

prt_.cmd store print

BCR || BP || Printer

|| is a shorthand for || z with H = Act; N Acty

prt_.cmd

© JPK

25

#3. Concurrency

Model checking

The parallel composition

© JPK

26

#3: Concurrency Model checking

Pairwise handshaking

TSIH e HTSn for H’L’,j = Act; N ACtj with H’L’,j NACt, = O for k ¢ {’L,]}
State space of TS;||...||TS,, is the Cartesian product of those of TS;

o foraeActz-\(U H”) and 0 < 7 < n!

0<j<n
i7F]
« /
S; —>i8i
o /
(81,3855, 8n) — (S1,...,8;,...5p)

o forac H;;and 0 <7 < j < n!

I R
(e / /
(S1yc e ey SiyenySjyevvySn) = (81,385 vvySjyens Sn)

© JPK 27

#3: Concurrency Model checking

Synchronous parallelism

Let TS; = (S;,Act, —,;, I;, AP;, L;) and Act x Act — Act, (a,3) — axf

TS TSy = (51 X SQ,ACt7 —, I[1 X I5,AP1 & AP9, L)

with L as defined before and — is defined by the following rule:

/ /
S1 &181 A\ S92 i>282

(51,80) —2T5 (s, 5)

typically used for synchronous hardware circuits, cf. next example

© JPK 28

#3. Concurrency

Model checking

© JPK

29

