

Concurrency

Lecture #3 of Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling and Verification

E-mail: katoen@cs.rwth-aachen.de

April 10, 2007

Overview Lecture #3

⇒ *Concurrency*

- The interleaving paradigm
- Communication principles
 - Shared variable “communication”
 - Handshaking
 - Synchronous communication
- Channel systems
- The state-space explosion problem

Concurrent systems

- Transition systems
 - suited for modeling sequential data-dependent systems
 - and for modeling sequential hardware circuits
- How about *concurrent* systems?
 - threading
 - distributed algorithms and communication protocols
- Can we model:
 - threading without communication?
 - synchronous communication?
 - synchronous composition of hardware?

Interleaving

- Abstract from decomposition of system in components
- Actions of independent components are merged or “interleaved”
 - a single processor is available
 - on which the actions of the processes are interlocked
- No assumptions are made on the order of processes
 - possible orders for non-terminating independent processes P and Q :

P	Q	P	Q	P	Q	Q	Q	P	...
P	P	Q	P	P	Q	P	P	Q	...
P	Q	P	P	Q	P	P	P	Q	...

- assumption: there is a scheduler with an a priori *unknown* strategy

Interleaving

- Justification for interleaving:

the effect of concurrently executed, independent actions α and β equals the effect when α and β are successively executed in arbitrary order

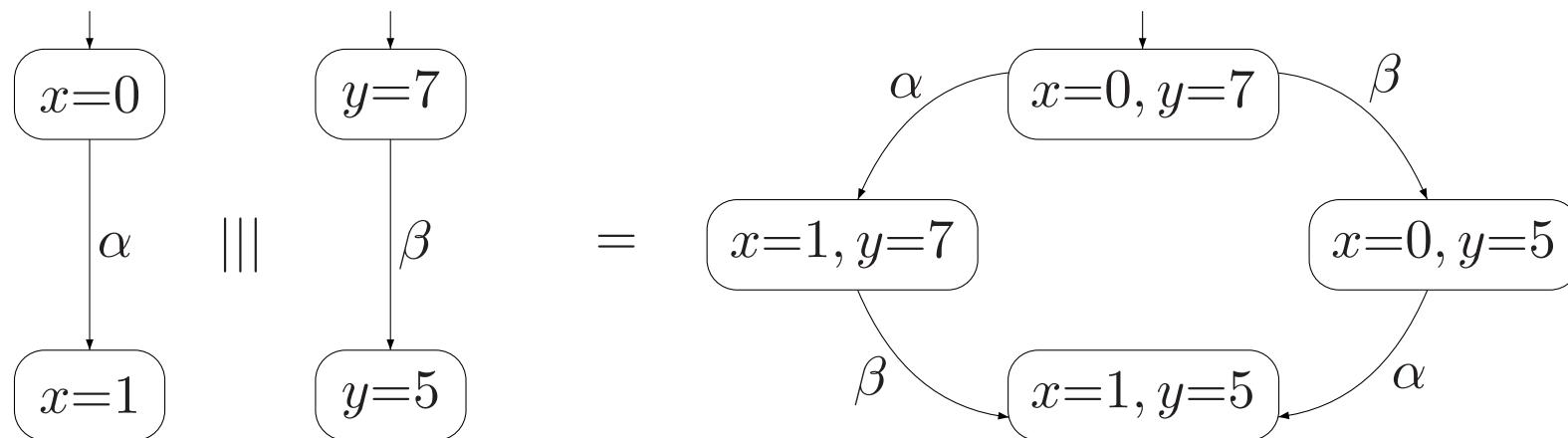
- Symbolically this is stated as:

$$\text{Effect}(\alpha ||| \beta, \eta) = \text{Effect}((\alpha ; \beta) + (\beta ; \alpha), \eta)$$

- $|||$ stands for the (binary) interleaving operator
- “ $;$ ” stands for sequential execution, and “ $+$ ” for non-deterministic choice

Interleaving

$$\underbrace{x := x + 1}_{=\alpha} \parallel \underbrace{y := y - 2}_{=\beta}$$



Interleaving of transition systems

Let $TS_i = (S_i, Act_i, \rightarrow_i, I_i, AP_i, L_i)$ $i=1, 2$, be two transition systems

Transition system

$$TS_1 \parallel TS_2 = (S_1 \times S_2, Act_1 \uplus Act_2, \rightarrow, I_1 \times I_2, AP_1 \uplus AP_2, L)$$

where $L(\langle s_1, s_2 \rangle) = L_1(s_1) \cup L_2(s_2)$ and the transition relation \rightarrow is defined by the rules:

$$\frac{s_1 \xrightarrow{\alpha} s'_1}{\langle s_1, s_2 \rangle \xrightarrow{\alpha} \langle s'_1, s_2 \rangle} \quad \text{and} \quad \frac{s_2 \xrightarrow{\alpha} s'_2}{\langle s_1, s_2 \rangle \xrightarrow{\alpha} \langle s_1, s'_2 \rangle}$$

What are program graphs?

A *program graph* PG over set Var of typed variables is a tuple

$$(Loc, Act, Effect, \longrightarrow, Loc_0, g_0) \quad \text{where}$$

- Loc is a set of *locations* with initial locations $Loc_0 \subseteq Loc$
- $Effect : Act \times Eval(Var) \rightarrow Eval(Var)$ is the *effect* function
- $\longrightarrow \subseteq Loc \times (\underbrace{Cond(Var)}_{\text{Boolean conditions over } Var} \times Act) \times Loc$, transition relation
- $g_0 \in Cond(Var)$ is the initial *condition*.

Notation: $\ell \xrightarrow{g:\alpha} \ell'$ denotes $(\ell, g, \alpha, \ell') \in \longrightarrow$

Beverage vending machine

- $Loc = \{ start, select \}$ with $Loc_0 = \{ start \}$
- $Act = \{ bget, sget, coin, ret_coin, refill \}$
- $Var = \{ nsprite, nbeer \}$ with domain $\{ 0, 1, \dots, max \}$

$$\text{Effect}(coin, \eta) = \eta$$

$$\text{Effect}(ret_coin, \eta) = \eta$$

- $\text{Effect}(sget, \eta) = \eta[nsprite := nsprite - 1]$

$$\text{Effect}(bget, \eta) = \eta[nbeer := nbeer - 1]$$

$$\text{Effect}(refill, \eta) = [nsprite := max, nbeer := max]$$

- $g_0 = (nsprite = max \wedge nbeer = max)$

From program graphs to transition systems

- Basic strategy: *unfolding*
 - state = location (current control) ℓ + data valuation η
 - initial state = initial location satisfying the initial condition g_0
- Propositions and labeling
 - propositions: “at ℓ ” and “ $x \in D$ ” for $D \subseteq \text{dom}(x)$
 - $\langle \ell, \eta \rangle$ is labeled with “at ℓ ” and all conditions that hold in η
- $\ell \xrightarrow{g:\alpha} \ell'$ and g holds in η then $\langle \ell, \eta \rangle \xrightarrow{\alpha} \langle \ell', \text{Effect}(\alpha, \eta) \rangle$

Transition systems for program graphs

The transition system $TS(PG)$ of program graph

$$PG = (Loc, \textcolor{blue}{Act}, \textcolor{blue}{Effect}, \longrightarrow, Loc_0, g_0)$$

over set Var of variables is the tuple $(S, \textcolor{blue}{Act}, \longrightarrow, I, AP, L)$ where

- $S = Loc \times \text{Eval}(Var)$
- $\longrightarrow \subseteq S \times Act \times S$ is defined by the rule:
$$\frac{\ell \xrightarrow{\textcolor{red}{g}:\alpha} \ell' \quad \eta \models \textcolor{red}{g}}{\langle \ell, \eta \rangle \xrightarrow{\alpha} \langle \ell', \textcolor{blue}{Effect}(\alpha, \eta) \rangle}$$
- $I = \{ \langle \ell, \eta \rangle \mid \ell \in Loc_0, \eta \models g_0 \}$
- $AP = Loc \cup \text{Cond}(Var)$ and $L(\langle \ell, \eta \rangle) = \{ \ell \} \cup \{ g \in \text{Cond}(Var) \mid \eta \models g \}$.

Interleaving of program graphs

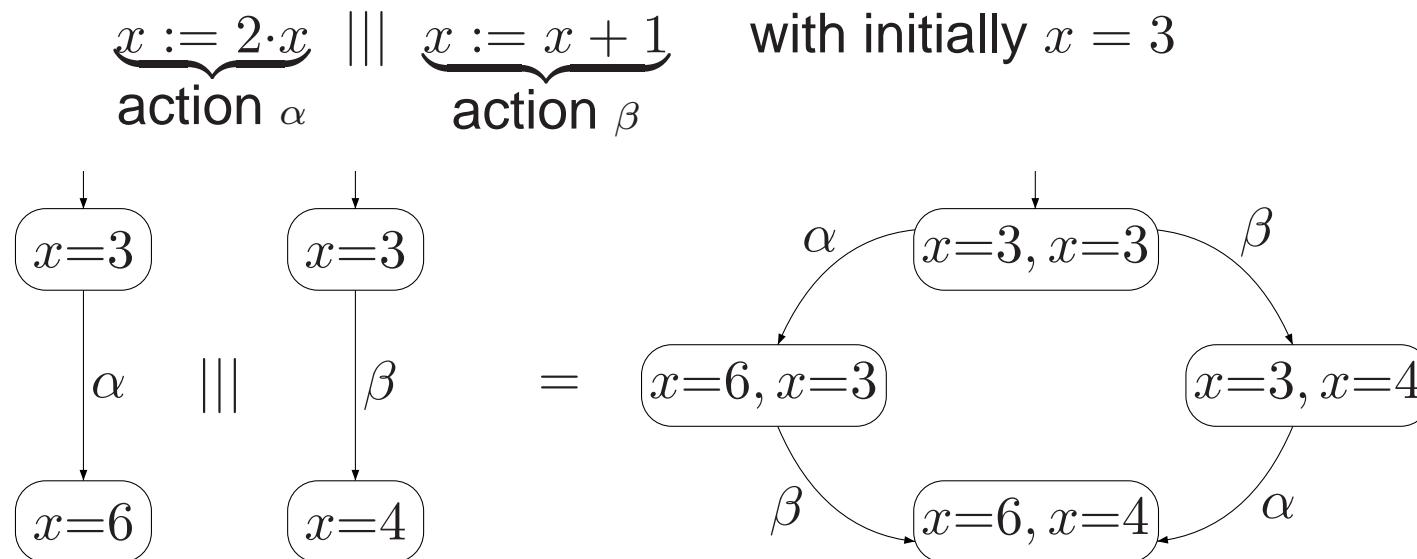
For program graphs PG_1 (on Var_1) and PG_2 (on Var_2) *without* shared variables, i.e., $Var_1 \cap Var_2 = \emptyset$,

$$TS(PG_1) \parallel\parallel TS(PG_2)$$

faithfully describes the concurrent behavior of PG_1 and PG_2

what if they have variables in common?

Shared variable communication



$\langle x=6, x=4 \rangle$ is an *inconsistent* state!

⇒ no faithful model of the concurrent execution of α and β

Idea: first unfold, then interleave

Interleaving of program graphs

Let $PG_i = (Loc_i, Act_i, Effect_i, \longrightarrow_i, Loc_{0,i}, g_{0,i})$ over variables Var_i .

Program graph $PG_1 \parallel PG_2$ over $Var_1 \cup Var_2$ is defined by:

$$(Loc_1 \times Loc_2, Act_1 \uplus Act_2, Effect, \longrightarrow, Loc_{0,1} \times Loc_{0,2}, g_{0,1} \wedge g_{0,2})$$

where \longrightarrow is defined by the inference rules:

$$\frac{\ell_1 \xrightarrow{g:\alpha}_1 \ell'_1}{\langle \ell_1, \ell_2 \rangle \xrightarrow{g:\alpha} \langle \ell'_1, \ell_2 \rangle} \quad \text{and} \quad \frac{\ell_2 \xrightarrow{g:\alpha}_2 \ell'_2}{\langle \ell_1, \ell_2 \rangle \xrightarrow{g:\alpha} \langle \ell_1, \ell'_2 \rangle}$$

and $Effect(\alpha, \eta) = Effect_i(\alpha, \eta)$ if $\alpha \in Act_i$.

Example

$\underbrace{x := 2 \cdot x}_{\text{action } \alpha} \parallel \underbrace{x := x + 1}_{\text{action } \beta} \quad \text{with initially } x = 3$

note that $TS(PG_1) \parallel TS(PG_2) \neq TS(PG_1 \parallel PG_2)$

On atomicity

$$\underbrace{x := x + 1; y := 2x + 1; z := y \mathbf{div} x}_{\text{non-atomic}} \parallel x := 0$$

Possible execution fragment:

$$\langle x = 11 \rangle \xrightarrow{x:=x+1} \langle x = 12 \rangle \xrightarrow{y:=2x+1} \langle x = 12 \rangle \xrightarrow{x:=0} \langle x = 0 \rangle \xrightarrow{z:=y/x} \dagger \dots$$

$$\underbrace{\langle x := x + 1; y := 2x + 1; z := y \mathbf{div} x \rangle}_{\text{atomic}} \parallel x := 0$$

Either the left process or the right process is completed first:

$$\langle x = 11 \rangle \xrightarrow{x:=x+1} \langle x = 12 \rangle \xrightarrow{y:=2x+1} \langle x = 12 \rangle \xrightarrow{z:=y/x} \langle x = 12 \rangle \xrightarrow{x:=0} \langle x = 0 \rangle$$

Peterson's mutual exclusion algorithm

```
P1  loop forever
  :
  (* non-critical actions *)
  ⟨b1 := true; x := 2⟩;          (* request *)
  wait until (x = 1  $\vee$   $\neg$ b2)
  do critical section od
  b1 := false                  (* release *)
  :
  (* non-critical actions *)
  end loop
```

b_i is true if and only if process P_i is waiting or in critical section
if both processes want to enter their critical section, x decides who gets access

Banking system

Person Left behaves as follows:

```
while true {  
    ....  
    nc : <b1, x = true, 2; >  
    wt : wait until(x == 1 ||  $\neg$  b2) {  
    cs : ... @account ...}  
    b1 = false;  
    ....  
}
```

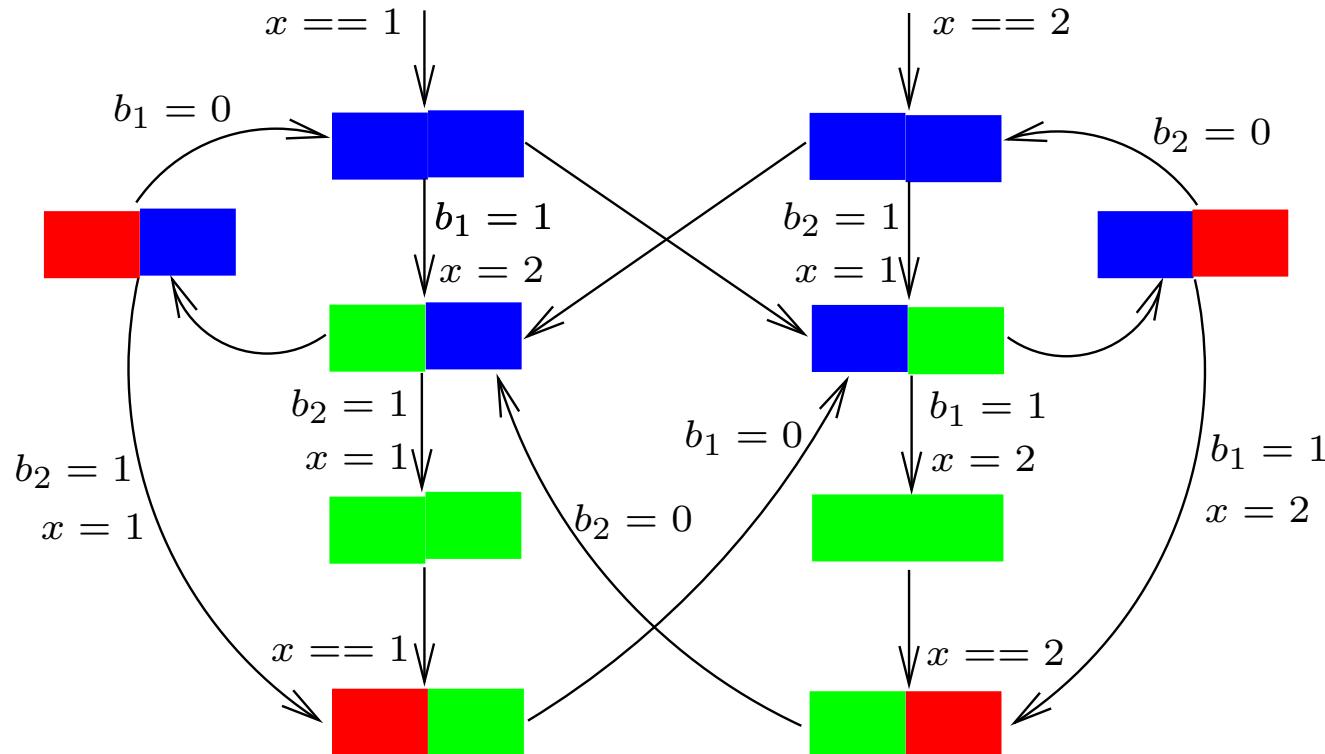
Person Right behaves as follows:

```
while true {  
    ....  
    nc : <b2, x = true, 1; >  
    wt : wait until(x == 2 ||  $\neg$  b1) {  
    cs : ... @account ...}  
    b2 = false;  
    ....  
}
```

Can we guarantee that only one person at a time has access to the bank account?

Program graph representation

Is the banking system safe?



Manually inspect whether two may have access to the account simultaneously: No

Banking system with non-atomic assignment

Person Left behaves as follows:

```
while true {  
    ....  
    nc : x = 2;  
    rq : b1 = true;  
    wt : wait until(x == 1 || !b2) {  
        cs : ... @account ...}  
        b1 = false;  
    ....  
}
```

Person Right behaves as follows:

```
while true {  
    ....  
    nc : x = 1;  
    rq : b2 = true;  
    wt : wait until(x == 2 || !b1) {  
        cs : ... @account ...}  
        b2 = false;  
    ....  
}
```

On atomicity again

Assume that the location inbetween the assignments $x := \dots$ and $b_i := \text{true}$ in program graph PG_i is called rq_i . Possible state sequence:

- $\langle nc_1, nc_2, x = 1, b_1 = \text{false}, b_2 = \text{false} \rangle$
- $\langle nc_1, rq_2, x = 1, b_1 = \text{false}, b_2 = \text{false} \rangle$
- $\langle rq_1, rq_2, x = 2, b_1 = \text{false}, b_2 = \text{false} \rangle$
- $\langle wt_1, rq_2, x = 2, b_1 = \text{true}, b_2 = \text{false} \rangle$
- $\langle cs_1, rq_2, x = 2, b_1 = \text{true}, b_2 = \text{false} \rangle$
- $\langle cs_1, wt_2, x = 2, b_1 = \text{true}, b_2 = \text{true} \rangle$
- $\langle cs_1, cs_2, x = 2, b_1 = \text{true}, b_2 = \text{true} \rangle!$

violation of the mutual exclusion property

Parallelism and handshaking

- Concurrent processes run truly in parallel
- To obtain cooperation, some **interaction** mechanism is needed
- If processes are distributed there is no shared memory

⇒ **Message passing**

- synchronous message passing (= handshaking)
- asynchronous message passing (= channel communication)

Handshaking

- Concurrent processes interact by *synchronous message passing*
 - processes execute synchronized actions together
 - that is, in interaction both processes need to participate at the same time
 - the interacting processes “shake hands”
- Abstract from information that is exchanged
- H is a set of *handshake actions*
 - actions outside H are independent and are interleaved
 - actions in H need to be synchronized

Handshaking

Let $TS_i = (S_i, Act_i, \rightarrow_i, I_i, AP_i, L_i)$, $i=1, 2$ and $H \subseteq Act_1 \cap Act_2$

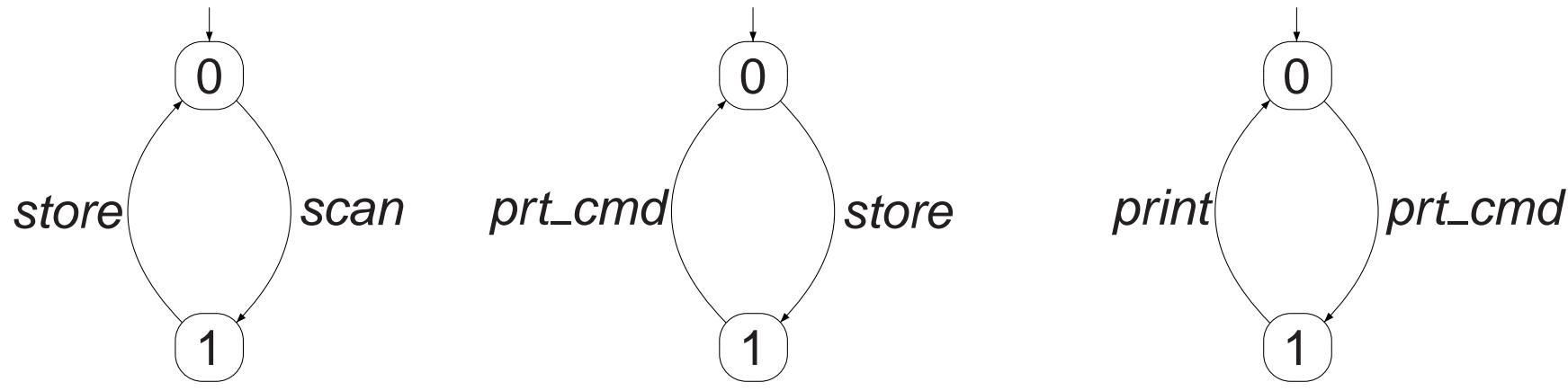
$$TS_1 \parallel_H TS_2 = (S_1 \times S_2, Act_1 \cup Act_2, \rightarrow, I_1 \times I_2, AP_1 \uplus AP_2, L)$$

where $L(\langle s_1, s_2 \rangle) = L_1(s_1) \cup L_2(s_2)$ and with \rightarrow defined by:

- $$\frac{s_1 \xrightarrow{\alpha} s'_1}{\langle s_1, s_2 \rangle \xrightarrow{\alpha} \langle s'_1, s_2 \rangle} \quad \frac{s_2 \xrightarrow{\alpha} s'_2}{\langle s_1, s_2 \rangle \xrightarrow{\alpha} \langle s_1, s'_2 \rangle} \quad \text{interleaving for } \alpha \notin H$$
- $$\frac{s_1 \xrightarrow{\alpha} s'_1 \quad \wedge \quad s_2 \xrightarrow{\alpha} s'_2}{\langle s_1, s_2 \rangle \xrightarrow{\alpha} \langle s'_1, s'_2 \rangle} \quad \text{handshaking for } \alpha \in H$$

note that $TS_1 \parallel_H TS_2 = TS_1 \parallel_H TS_2$ but $(TS_1 \parallel_{H_1} TS_2) \parallel_{H_2} TS_3 \neq TS_1 \parallel_{H_1} (TS_2 \parallel_{H_2} TS_3)$

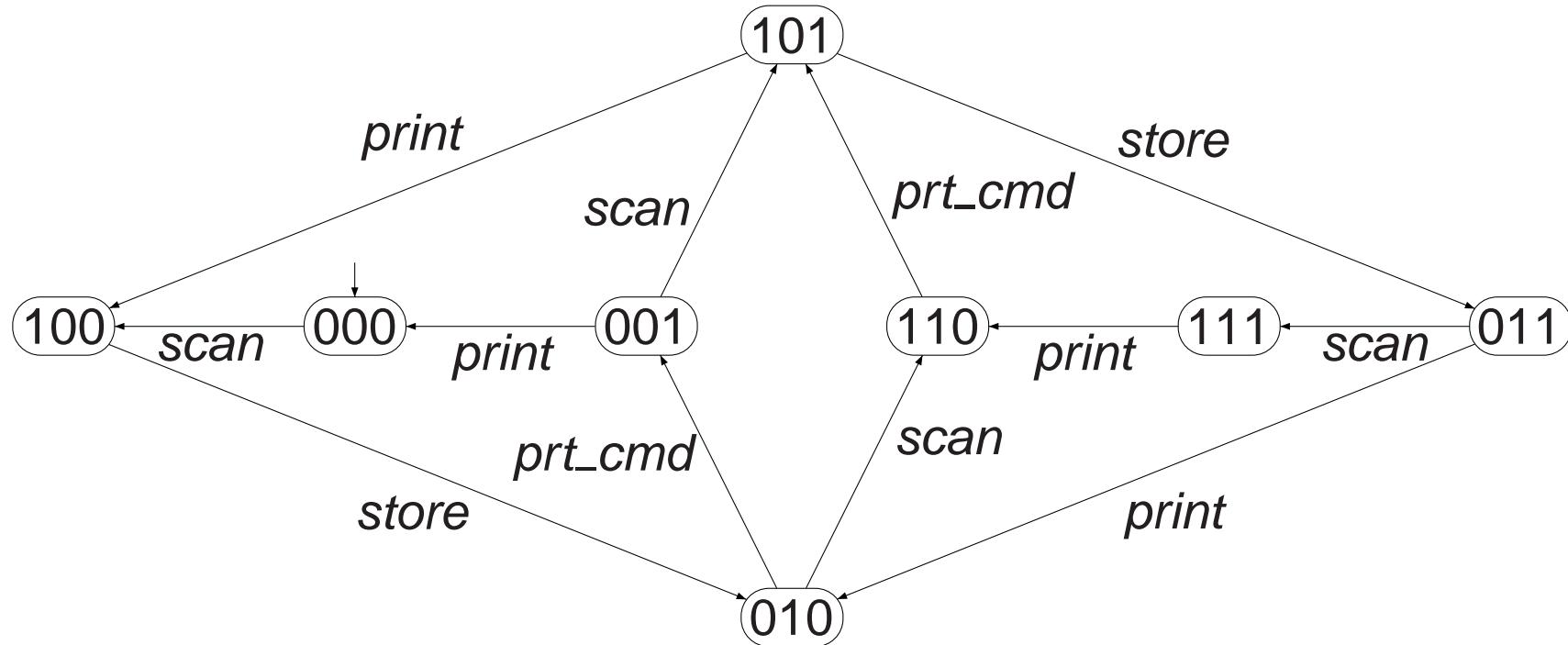
A booking system



$BCR \parallel BP \parallel Printer$

\parallel is a shorthand for \parallel_H with $H = Act_1 \cap Act_2$

The parallel composition



Pairwise handshaking

$TS_1 \parallel \dots \parallel TS_n$ for $H_{i,j} = Act_i \cap Act_j$ with $H_{i,j} \cap Act_k = \emptyset$ for $k \notin \{i, j\}$

State space of $TS_1 \parallel \dots \parallel TS_n$ is the Cartesian product of those of TS_i

- for $\alpha \in Act_i \setminus \left(\bigcup_{\substack{0 < j \leq n \\ i \neq j}} H_{i,j} \right)$ and $0 < i \leq n$:

$$\frac{s_i \xrightarrow{\alpha} {}_i s'_i}{\langle s_1, \dots, s_i, \dots, s_n \rangle \xrightarrow{\alpha} \langle s_1, \dots, s'_i, \dots, s_n \rangle}$$

- for $\alpha \in H_{i,j}$ and $0 < i < j \leq n$:

$$\frac{s_i \xrightarrow{\alpha} {}_i s'_i \quad \wedge \quad s_j \xrightarrow{\alpha} {}_j s'_j}{\langle s_1, \dots, s_i, \dots, s_j, \dots, s_n \rangle \xrightarrow{\alpha} \langle s_1, \dots, s'_i, \dots, s'_j, \dots, s_n \rangle}$$

Synchronous parallelism

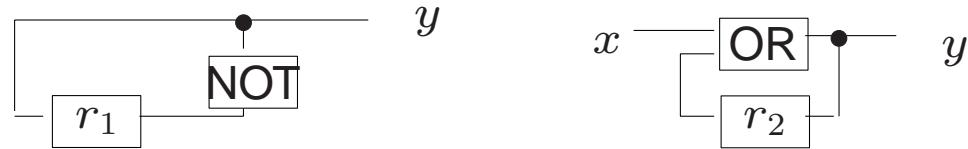
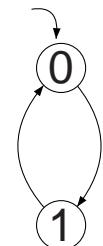
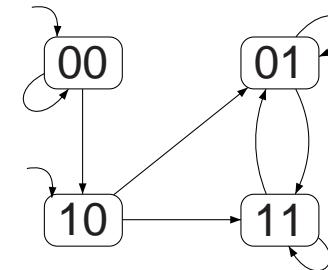
Let $TS_i = (S_i, Act, \rightarrow_i, I_i, AP_i, L_i)$ and $Act \times Act \rightarrow Act, (\alpha, \beta) \rightarrow \alpha * \beta$

$$TS_1 \otimes TS_2 = (S_1 \times S_2, Act, \rightarrow, I_1 \times I_2, AP_1 \uplus AP_2, L)$$

with L as defined before and \rightarrow is defined by the following rule:

$$\frac{s_1 \xrightarrow{\alpha} s'_1 \quad \wedge \quad s_2 \xrightarrow{\beta} s'_2}{\langle s_1, s_2 \rangle \xrightarrow{\alpha * \beta} \langle s'_1, s'_2 \rangle}$$

typically used for synchronous hardware circuits, cf. next example

 TS_1 : TS_2 : $TS_1 \otimes TS_2$: