

Channel Systems

Lecture #4 of Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling and Verification

E-mail: katoen@cs.rwth-aachen.de

April 11, 2007

Overview Lecture #4

- *Concurrency*
 - The interleaving paradigm
- Communication principles
 - Shared variable “communication”
 - Handshaking
 - Synchronous communication

⇒ **Channel systems**

- nanoPromela

- The state-space explosion problem

Channels

- Processes communicate via *channels* ($c \in \text{Chan}$)
- **Channels** are first-in, first-out buffers
- **Channels** are types (wrt. their content — $\text{dom}(c)$)
- **Channels** buffer messages (of appropriate type)
- **Channel capacity** = maximum # messages that can be stored
 - if $\text{cap}(c) \in \mathbb{N}$ then c is a channel with finite capacity
 - if $\text{cap}(c) = \infty$ then c has an infinite capacity
 - if $\text{cap}(c) > 0$, there is some “delay” between sending and receipt
 - if $\text{cap}(c) = 0$, then communication via c amounts to **handshaking**

Channels

- Process $P_i = \text{program graph } PG_i + \text{communication actions}$
 - $c!v$ transmit the value v along channel c
 - $c?x$ receive a message via channel c and assign it to variable x
- $Comm = \{ c!v, c?x \mid c \in Chan, v \in \text{dom}(c), x \in \text{Var. } \text{dom}(x) \supseteq \text{dom}(c) \}$
- Sending and receiving a message
 - $c!v$ puts the value v at the rear of the buffer c (if c is not full)
 - $c?x$ retrieves the front element of the buffer and assigns it to x (if c is not empty)
 - if $\text{cap}(c) = 0$, channel c has *no* buffer
 - if $\text{cap}(c) = 0$, sending and receiving can takes place simultaneously
this is called **synchronous message passing** or **handshaking**
 - if $\text{cap}(c) > 0$, sending and receiving can never take place simultaneously
this is called **asynchronous message passing**

Channel systems

A program graph over $(Var, Chan)$ is a tuple

$$PG = (Loc, Act, Effect, \rightarrow, Loc_0, g_0)$$

where

$$\rightarrow \subseteq Loc \times (Cond(Var) \times Act) \times Loc \cup \underbrace{Loc \times Comm \times Loc}_{\text{communication actions}}$$

A *channel system* CS over $(\bigcup_{0 < i \leq n} Var_i, Chan)$:

$$CS = [PG_1 \mid \dots \mid PG_n]$$

with program graphs PG_i over $(Var_i, Chan)$

Communication actions

- *Handshaking*

- if $\text{cap}(c) = 0$, then process P_i can perform $\ell_i \xrightarrow{c!v} \ell'_i$ only
- . . . if P_j , say, can perform $\ell_j \xrightarrow{c?x} \ell'_j$
- the effect corresponds to the (atomic) *distributed* assignment $x := v$.

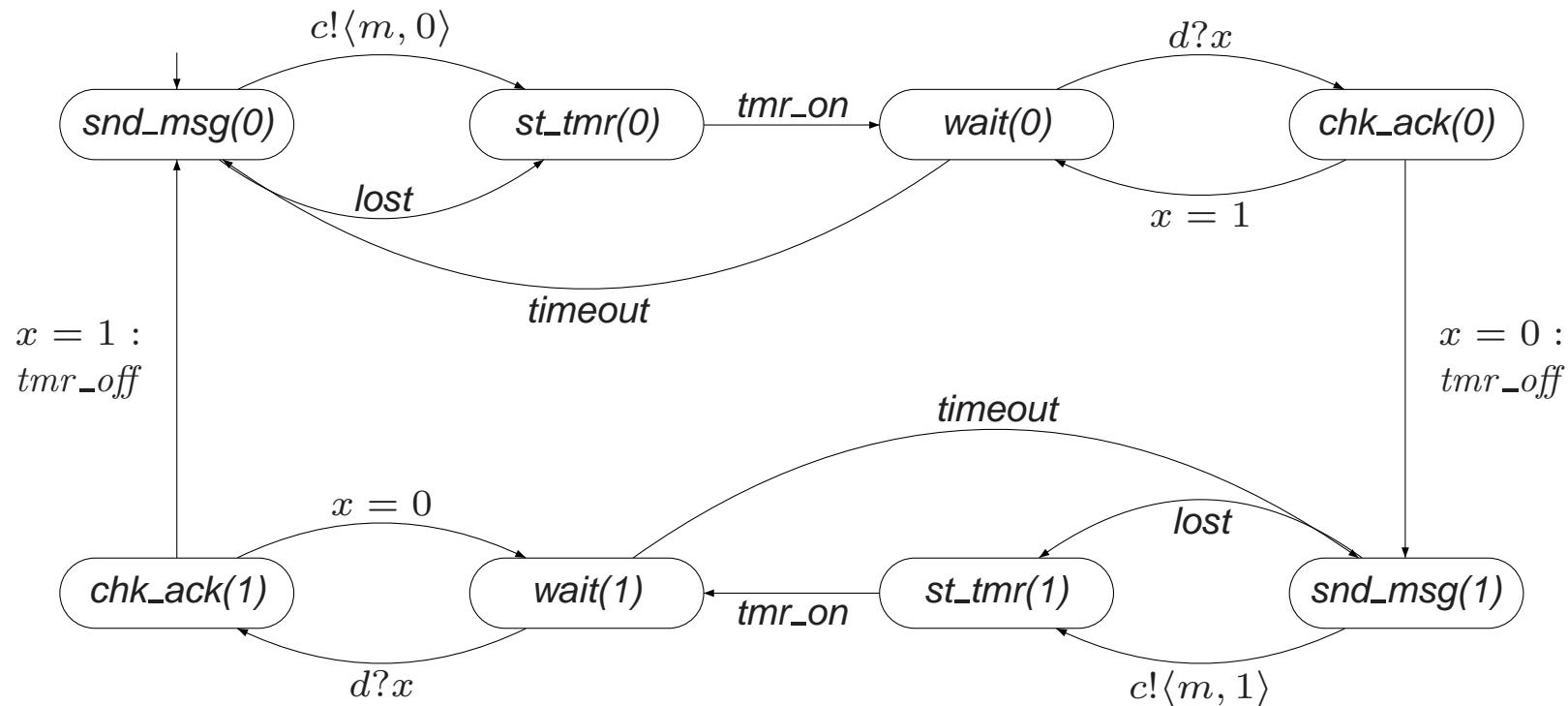
- *Asynchronous message passing*

- if $\text{cap}(c) > 0$, then process P_i can perform $\ell_i \xrightarrow{c!v} \ell'_i$
- . . . if and only if less than $\text{cap}(c)$ messages are stored in c
- P_j may perform $\ell_j \xrightarrow{c?v} \ell'_j$ if and only if the buffer of c is not empty
- then the first element v of the buffer is extracted and assigned to x (*atomically*)

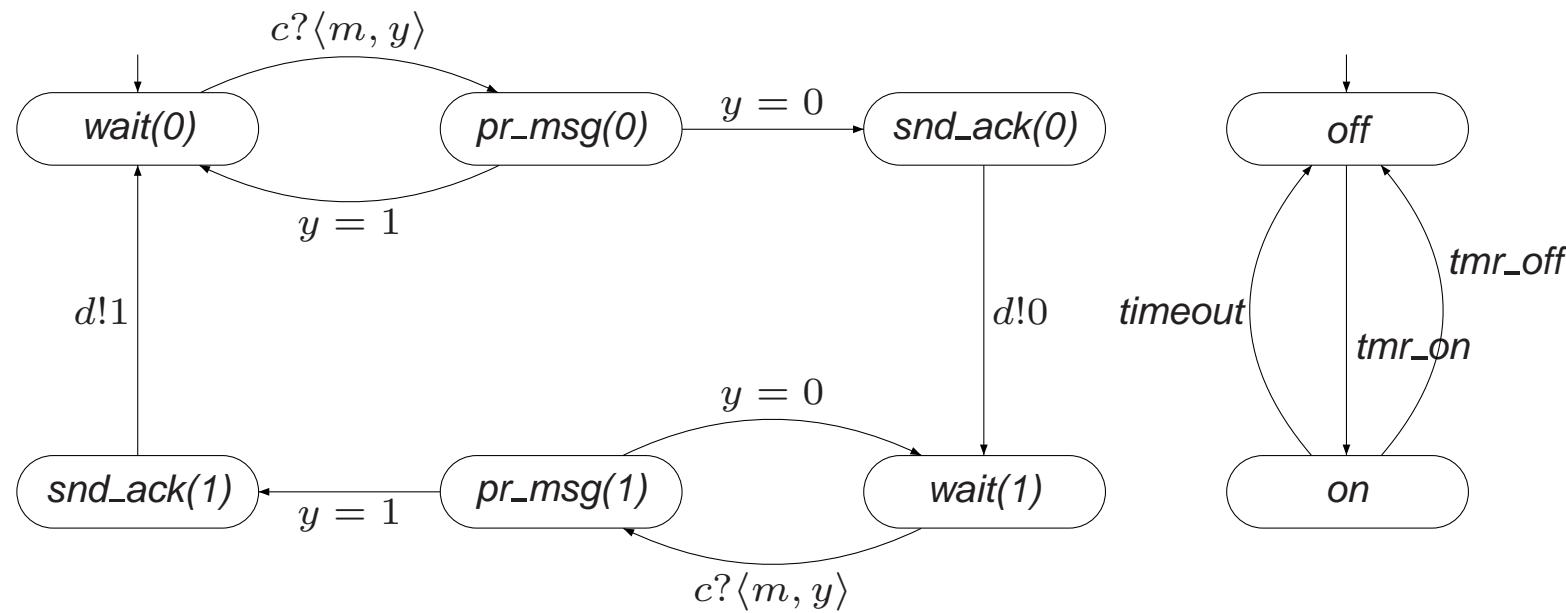
	executable if . . .	effect
$c!v$	c is not “full”	$\text{Enqueue}(c, v)$
$c?x$	c is not empty	$\langle x := \text{Front}(c) ; \text{Dequeue}(c) \rangle$;

The alternating bit protocol

The alternating bit protocol: sender



The alternating bit protocol: receiver



Channel evaluations

- A *channel evaluation* ξ is
 - a mapping from channel $c \in \text{Chan}$ onto a sequence $\xi(c) \in \text{dom}(c)^*$ such that
 - current length cannot exceed the capacity of c : $\text{len}(\xi(c)) \leq \text{cap}(c)$
 - $\xi(c) = v_1 v_2 \dots v_k$ ($\text{cap}(c) \geq k$) denotes v_1 is at front of buffer etc.
- $\xi[c := v_1 \dots v_k]$ denotes the channel evaluation

$$\xi[c := v_1 \dots v_k](c') = \begin{cases} \xi(c') & \text{if } c \neq c' \\ v_1 \dots v_k & \text{if } c = c'. \end{cases}$$

- Initial channel evaluation ξ_0 equals $\xi_0(c) = \varepsilon$ for any c

Transition system semantics of a channel system

Let $CS = [PG_1 \mid \dots \mid PG_n]$ be a *channel system* over $(Chan, Var)$ with

$$PG_i = (Loc_i, Act_i, Effect_i, \sim_i, Loc_{0,i}, g_{0,i}), \quad \text{for } 0 < i \leq n$$

$TS(CS)$ is the *transition system* $(S, Act, \rightarrow, I, AP, L)$ where:

- $S = (Loc_1 \times \dots \times Loc_n) \times Eval(Var) \times Eval(Chan)$
- $Act = (\biguplus_{0 < i \leq n} Act_i) \uplus \{ \tau \}$
- \rightarrow is defined by the inference rules on the next slides
- $I = \left\{ \langle \ell_1, \dots, \ell_n, \eta, \xi_0 \rangle \mid \forall i. (\ell_i \in Loc_{0,i} \wedge \eta \models g_{0,i}) \wedge \forall c. \xi_0(c) = \varepsilon \right\}$
- $AP = \biguplus_{0 < i \leq n} Loc_i \uplus Cond(Var)$
- $L(\langle \ell_1, \dots, \ell_n, \eta, \xi \rangle) = \{ \ell_1, \dots, \ell_n \} \cup \{ g \in Cond(Var) \mid \eta \models g \}$

Inference rules (I)

- Interleaving for $\alpha \in \text{Act}_i$:

$$\frac{\ell_i \xrightarrow{g:\alpha} \ell'_i \quad \wedge \quad \eta \models g}{\langle \ell_1, \dots, \ell_i, \dots, \ell_n, \eta, \xi \rangle \xrightarrow{\alpha} \langle \ell_1, \dots, \ell'_i, \dots, \ell_n, \eta', \xi \rangle}$$

where $\eta' = \text{Effect}(\alpha, \eta)$

- Synchronous message passing over $c \in \text{Chan}$, $\text{cap}(c) = 0$:

$$\frac{\ell_i \xrightarrow{c?x} \ell'_i \quad \wedge \quad \ell_j \xrightarrow{c!v} \ell'_j \quad \wedge \quad i \neq j}{\langle \ell_1, \dots, \ell_i, \dots, \ell_j, \dots, \ell_n, \eta, \xi \rangle \xrightarrow{\tau} \langle \ell_1, \dots, \ell'_i, \dots, \ell'_j, \dots, \ell_n, \eta', \xi \rangle}$$

where $\eta' = \eta[x := v]$.

Inference rules (II)

- Asynchronous message passing for $c \in Chan$, $cap(c) > 0$:
 - receive a value along channel c and assign it to variable x :

$$\frac{\ell_i \xrightarrow{c?x} \ell'_i \quad \wedge \quad \mathbf{len}(\xi(c)) = k > 0 \quad \wedge \quad \xi(c) = v_1 \dots v_k}{\langle \ell_1, \dots, \ell_i, \dots, \ell_n, \eta, \xi \rangle \xrightarrow{\tau} \langle \ell_1, \dots, \ell'_i, \dots, \ell_n, \eta', \xi' \rangle}$$

where $\eta' = \eta[x := v_1]$ and $\xi' = \xi[c := v_2 \dots v_k]$.

- transmit value $v \in \mathbf{dom}(c)$ over channel c :

$$\frac{\ell_i \xrightarrow{c!v} \ell'_i \quad \wedge \quad \mathbf{len}(\xi(c)) = k < cap(c) \quad \wedge \quad \xi(c) = v_1 \dots v_k}{\langle \ell_1, \dots, \ell_i, \dots, \ell_n, \eta, \xi \rangle \xrightarrow{\tau} \langle \ell_1, \dots, \ell'_i, \dots, \ell_n, \eta, \xi' \rangle}$$

where $\xi' = \xi[c := v_1 v_2 \dots v_k v]$.

Handling unexpected messages

sender S	timer	receiver R	channel c	channel d	event
$snd_msg(0)$	off	$wait(0)$	\emptyset	\emptyset	
$st_tmr(0)$	off	$wait(0)$	$\langle m, 0 \rangle$	\emptyset	message with bit 0 transmitted
$wait(0)$	on	$wait(0)$	$\langle m, 0 \rangle$	\emptyset	
$snd_msg(0)$	off	$wait(0)$	$\langle m, 0 \rangle$	\emptyset	timeout
$st_tmr(0)$	off	$wait(0)$	$\langle m, 0 \rangle \langle m, 0 \rangle$	\emptyset	retransmission
$st_tmr(0)$	off	$pr_msg(0)$	$\langle m, 0 \rangle$	\emptyset	receiver reads first message
$st_tmr(0)$	off	$snd_ack(0)$	$\langle m, 0 \rangle$	\emptyset	
$st_tmr(0)$	off	$wait(1)$	$\langle m, 0 \rangle$	0	receiver changes into mode-1
$st_tmr(0)$	off	$pr_msg(1)$	\emptyset	0	receiver reads retransmission
$st_tmr(0)$	off	$wait(1)$	\emptyset	0	and ignores it
:	:	:	:	:	

nanoPromela

- Promela (Process Meta Language) is modeling language for SPIN
 - most widely used model checker SPIN
 - developed by Gerard Holzmann (Bell Labs, NASA JPL)
 - ACM Software Award 2002
- nanoPromela is the core of Promela
 - shared variables and channel-based communication
 - formal semantics of a Promela model is a channel system
 - processes are defined by means of a guarded command language
- No actions, statements describe effect of actions

nanoPromela

nanoPromela-program $\overline{\mathcal{P}} = [\mathcal{P}_1 | \dots | \mathcal{P}_n]$ with \mathcal{P}_i processes

A process is specified by a statement:

```

stmt      ::=  skip  |  x := expr  |  c?x  |  c!expr  |
              stmt1 ; stmt2  |  atomic{assignments}  |
              if    :: g1 ⇒ stmt1  ...  :: gn ⇒ stmtn  fi   |
              do    :: g1 ⇒ stmt1  ...  :: gn ⇒ stmtn  do
assignments ::=  x1 := expr1 ; x2 := expr2 ; ... ; xm := exprm

```

x is a variable in *Var*, *expr* an expression and *c* a channel, *g_i* a guard

assume the Promela specification is type-consistent

Conditional statements

if :: $g_1 \Rightarrow \text{stmt}_1 \dots :: g_n \Rightarrow \text{stmt}_n$ **fi**

- Nondeterministic choice between statements stmt_i for which g_i holds
- Test-and-set semantics: (deviation from Promela)
 - guard evaluation + selection of enabled command + execution first atomic step of selected statement is all performed **atomically**
- The **if–fi–command** **blocks** if no guard holds
 - parallel processes may unblock a process by changing shared variables
 - e.g., when $y=0$, **if** :: $y > 0 \Rightarrow x := 42$ **fi** waits until y exceeds 0
- Standard abbreviations:
 - **if** g **then** stmt_1 **else** stmt_2 **fi** \equiv **if** :: $g \Rightarrow \text{stmt}_1 :: \neg g \Rightarrow \text{stmt}_2$ **fi**
 - **if** g **then** stmt_1 **fi** \equiv **if** :: $g \Rightarrow \text{stmt}_1 :: \neg g \Rightarrow \text{skip}$ **fi**

Iteration statements

do :: $g_1 \Rightarrow \text{stmt}_1 \dots :: g_n \Rightarrow \text{stmt}_n$ **od**

- Iterative execution of nondeterministic choice among $g_i \Rightarrow \text{stmt}_i$
 - where guard g_i holds in the current state
- No blocking if all guards are violated; instead, loop is aborted
- **do** :: $g \Rightarrow \text{stmt}$ **od** \equiv **while** g **do** stmt **od**
- No break-statements to abort a loop (deviation from Promela)

Peterson's algorithm

The nanoPromela-code of process \mathcal{P}_1 is given by the statement:

```
do :: true => skip;  
           atomic{ $b_1 := \text{true}; x := 2$ };  
           if ::  $(x = 1) \vee \neg b_2 \Rightarrow crit_1 := \text{true}$  fi  
           atomic{ $crit_1 := \text{false}; b_1 := \text{false}$ }  
od
```

Beverage vending machine

The following nanoPromela program describes its behaviour:

```
do :: true =>

    skip;

    if :: nsprite > 0 => nsprite := nsprite - 1
        :: nbeer > 0 => nbeer := nbeer - 1
        :: nsprite = nbeer = 0 => skip

    fi

    :: true => atomic{ nbeer := max; nsprite := max }

od
```

Formal semantics

The *semantics* of a nanoPromela-statement over $(\text{Var}, \text{Chan})$ is a *program graph* over $(\text{Var}, \text{Chan})$.

The program graphs PG_1, \dots, PG_n for the processes $\mathcal{P}_1, \dots, \mathcal{P}_n$ of a nanoPromela-program $\overline{\mathcal{P}} = [\mathcal{P}_1 | \dots | \mathcal{P}_n]$ constitute a *channel system* over $(\text{Var}, \text{Chan})$

Example:

```
loop  =  do  ::  x > 1  =>  y := x + y
              ::  y < x  =>  x := 0; y := x
          od
```

Sub-statements

Inference rules

$$\text{skip} \xrightarrow{\text{true: } id} \text{exit}$$

where id denotes an action that does not change the values of the variables

$$x := \text{expr} \xrightarrow{\text{true : assign}(x, \text{expr})} \text{exit}$$

$\text{assign}(x, \text{expr})$ denotes the action that only changes x , no other variables

$$c?x \xrightarrow{c?x} \text{exit}$$

$$c!x \xrightarrow{c!x} \text{exit}$$

Inference rules

$$\text{atomic}\{x_1 := \text{expr}_1; \dots; x_m := \text{expr}_m\} \xrightarrow{\text{true} : \alpha_m} \text{exit}$$

where $\alpha_0 = \text{id}$, $\alpha_i = \text{Effect}(\text{assign}(x_i, \text{expr}_i), \text{Effect}(\alpha_{i-1}, \eta))$ for $1 \leq i \leq m$

$$\frac{\text{stmt}_1 \xrightarrow{g:\alpha} \text{stmt}'_1 \neq \text{exit}}{\text{stmt}_1; \text{stmt}_2 \xrightarrow{g:\alpha} \text{stmt}'_1; \text{stmt}_2}$$

$$\frac{\text{stmt}_1 \xrightarrow{g:\alpha} \text{exit}}{\text{stmt}_1; \text{stmt}_2 \xrightarrow{g:\alpha} \text{stmt}_2}$$

Inference rules

$$\frac{\text{stmt}_i \xrightarrow{h:\alpha} \text{stmt}'_i}{\text{cond_cmd} \xrightarrow{g_i \wedge h:\alpha} \text{stmt}'_i}$$

$$\frac{\text{stmt}_i \xrightarrow{h:\alpha} \text{stmt}'_i \neq \text{exit}}{\text{loop} \xrightarrow{g_i \wedge h:\alpha} \text{stmt}'_i; \text{loop}} \quad \frac{\text{stmt}_i \xrightarrow{h:\alpha} \text{exit}}{\text{loop} \xrightarrow{g_i \wedge h:\alpha} \text{loop}}$$

$$\frac{}{\text{loop} \xrightarrow{\neg g_1 \wedge \dots \wedge \neg g_n} \text{exit}}$$

Overview Lecture #4

- *Concurrency*
 - The interleaving paradigm
- Communication principles
 - Shared variable “communication”
 - Handshaking
 - Synchronous communication
- Channel systems

→ The state-space explosion problem

Sequential programs

- The # states of a simple program graph is:

$$|\text{#program locations}| \cdot \prod_{\text{variable } x} |\text{dom}(x)|$$

⇒ number of states grows *exponentially* in the number of program variables

- N variables with k possible values each yields k^N states
- this is called *the state-space explosion problem*

- A program with 10 locations, 3 bools, 5 integers (in range 0 … 9):

$$10 \cdot 2^3 \cdot 10^5 = 800,000 \text{ states}$$

- Adding a single 50-positions bit-array yields $800,000 \cdot 2^{50}$ states

Concurrent programs

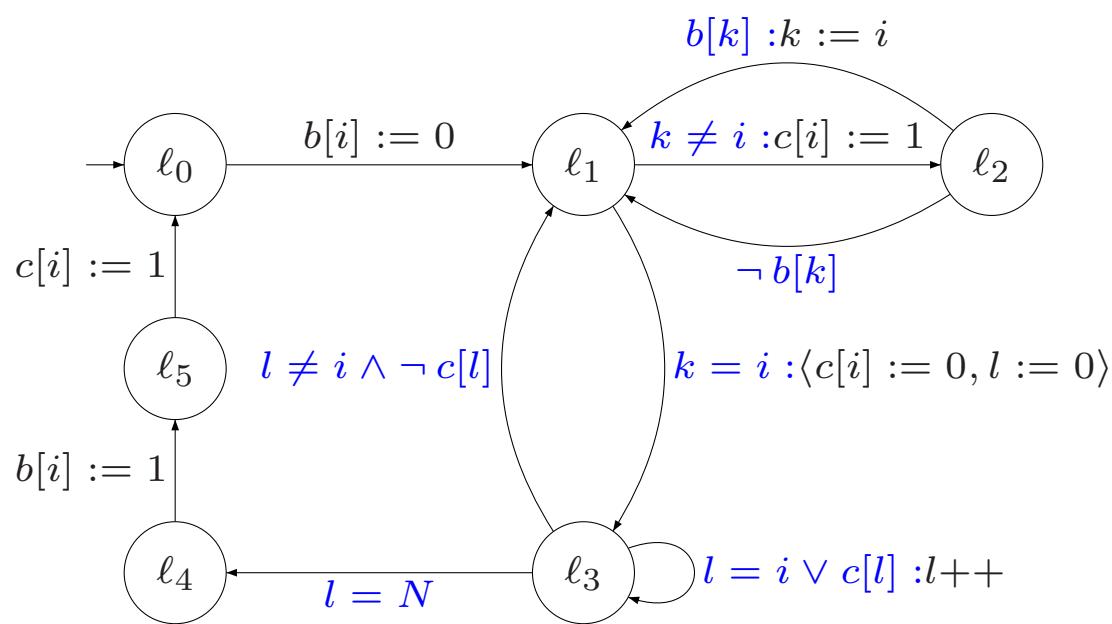
- The # states of $P \equiv P_1 \parallel \dots \parallel P_n$ is maximally:

$$\# \text{states of } P_1 \times \dots \times \# \text{states of } P_n$$

⇒ # states grows *exponentially* with the number of components

- The composition of N components of size k each yields k^N states
- This is called *the state-space explosion problem*

Dijkstra's mutual exclusion program



- two bit-arrays of size N
- global variable k
 - with value in $1, \dots, N$
- local variable l
 - with value in $1, \dots, N$
- 6 program locations per process

\Rightarrow totally $2^{2N} \cdot N \cdot (6N)^N$ states

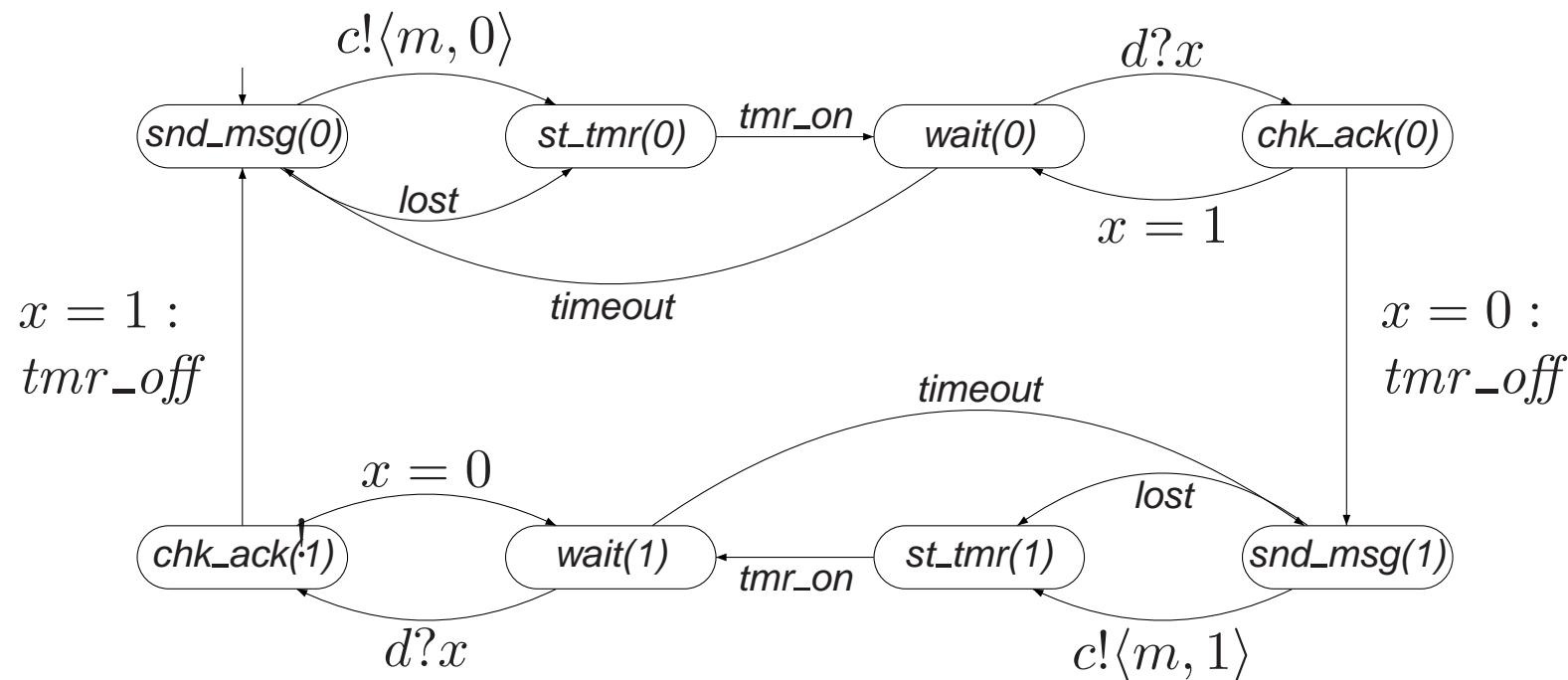
Channel systems

- Asynchronous communication of processes via *channels*
 - each channel c has a bounded capacity $cap(c)$
 - if a channel has capacity 0, we obtain **handshaking**
- # states of system with N components and K channels is:

$$\prod_{i=1}^N \left(|\text{#program locations}| \prod_{\text{variable } x} |\text{dom}(x)| \right) \cdot \prod_{j=1}^K |\text{dom}(c_j)|^{cap(c_j)}$$

this is the underlying structure of Promela

The alternating bit protocol



channel capacity 10, and datums are bits, yields $2 \cdot 8 \cdot 6 \cdot 4^{10} \cdot 2^{10} = 3 \cdot 2^{35} \approx 10^{11}$ states

Summary of Chapter 2

- Transition systems are fundamental for modeling software and hardware
- Interleaving = execution of independent concurrent processes by nondeterminism
- For shared variable communication use composition on program graphs
- Handshaking on a set H of actions amounts to
 - executing action $\notin H$ autonomously (= interleaving)
 - those in H simultaneously
- Channel systems = program graphs + first-in first-out communication channels
 - handshaking for channels of capacity 0
 - asynchronous message passing when capacity exceeds 0
 - semantical model of Promela
- Size of transition systems grows exponentially
 - in the number of concurrent components and the number of variables