© JPK

Channel Systems
Lecture #4 of Model Checking

Joost-Pieter Katoen
Lehrstuhl 2: Software Modeling and Verification

E-mail: kat oen@s. r wt h- aachen. de

April 11, 2007

#4. Channel systems Model checking

Overview Lecture #4

e Concurrency

— The interleaving paradigm

e Communication principles

— Shared variable “communication”
— Handshaking
— Synchronous communication

= Channel systems

— nanoPromela

e The state-space explosion problem

© JPK 1

#4. Channel systems Model checking

Channels

e Processes communicate via channels (¢ € Chan)
e Channels are first-in, first-out buffers
e Channels are types (wrt. their content — dom(c))

e Channels buffer messages (of appropriate type)

e Channel capacity = maximum # messages that can be stored

— if cap(c) € IN then c is a channel with finite capacity

— if cap(c) = oo then ¢ has an infinite capacity

— if cap(c) > 0, there is some “delay” between sending and receipt
— if cap(c) = 0, then communication via ¢ amounts to handshaking

© JPK 2

#4. Channel systems Model checking

Channels

e Process P; = program graph PG, + communication actions

clv transmit the value v along channel ¢

c?’xr receive a message via channel ¢ and assign it to variable x
e Comm = {clv, c?z | ¢ € Chan, v € dom(c), = € Var. dom(z) O dom(c) }

e Sending and receiving a message

— clv puts the value v at the rear of the buffer ¢ (if ¢ is not full)
— c?x retrieves the front element of the buffer and assigns it to x (if c is not empty)
— if cap(c) = 0, channel ¢ has no buffer
— if cap(c) = 0, sending and receiving can takes place simultaneously
this is called synchronous message passing or handshaking
— if cap(c) > 0, sending and receiving can never take place simultaneously
this is called asynchronous message passing

© JPK 3

#4. Channel systems Model checking

Channel systems

A program graph over (Var,Chan) is a tuple
PG = (Loc, Act, Effect, —, Locy, go)
where

— C Loc x (Cond(Var) x Act) x Loc U Loc x Comm x Loc
communicﬁfion actions

A channel system CS over (| J,.;,, Var;, Chan):
CS = [PG, |...| PG,

with program graphs PG; over (Var;, Chan)

© JPK 4

#4. Channel systems Model checking

Communication actions
e Handshaking

— if cap(c) = 0, then process P; can perform ¢; —=% 2. only
— ... if P}, say, can perform ¢; <% ¢’
— the effect corresponds to the (atomic) distributed assignment x := v.

e Asynchronous message passing

— if cap(c) > 0, then process P; can perform ¢; <<% %

— ... ifand only if less than cap(c) messages are stored in ¢

— P; may perform ¢; - ¢’ if and only if the buffer of ¢ is not empty

— then the first element v of the buffer is extracted and assigned to = (atomically)

executable if . .. | effect
clv | cisnot“full” Enqueue(c, v)
c?x | cis notempty (x := Front(c); Dequeue(c));

© JPK 5

#4. Channel systems Model checking

The alternating bit protocol

© JPK 6

#4. Channel systems Model checking

The alternating bit protocol: sender

cl(m, 0) d?x
snd_msg tmr_on hk_ack(O)
o1 timeout e — 0.
tmr-off timeout tmr-off
chk_ack(mr_on _msg(l)
d?x cl{m, 1)

© JPK .

#4. Channel systems Model checking

The alternating bit protocol: receiver

c?(m, y)
: y=20
wait(0) r_msg(O) snd_ack(0)
y=1
tmr_off
d!1l d!0 timeout
on
y=20
snd_ack(1) s =1 pr_msg(lwait(l)
c?(m, y)

© JPK 8

#4. Channel systems Model checking

Channel evaluations

e A channel evaluation € is

— a mapping from channel ¢ € Chan onto a sequence £(c) € dom(c)* such that
— current length cannot exceed the capacity of c: len(&(c)) < cap(c)
— &(c) = v vy ...v, (cap(c) > k) denotes v, is at front of buffer etc.

e {|c:=wvp...v;] denotes the channel evaluation

if ¢ £ ¢

v1...0 Ife=C.

e Initial channel evaluation &, equals &y(c) = ¢ for any ¢

© JPK 9

#4. Channel systems Model checking

Transition system semantics of a channel system
Let CS = [PG, | ... | PG,] be a channel system over (Chan, Var) with
PG, = (Loc;, Act;, Effect;,~;,L0Cp ;,90:), TforO<i<n

TS(CS) is the transition system (.S, Act, —, I, AP, L) where:

e S = (Locy; x ... x Loc,) x Eval(Var) x Eval(Chan)

Act = (Hycic, Acti) W {7}

e — is defined by the inference rules on the next slides

o | = { (l1,...,0n,m, &) | Vi. (4i € Locos A = go.i) ANVe. €o(c) = 8}
o AP = H,.;,,Loc; & Cond(Var)

L(<£17'°'a£n7777£>) — {617'° ,En} U {g € Cond(Var) | n |: g}

© JPK 10

#4. Channel systems

Model checking

Inference rules (I)

e Interleaving for a € Act;:

U=l N nEg

<€17---7€7j7--- n777€> <€1,...,€;,...,€n,n/,€>

where 1)’ = Effect(«, 1)

e Synchronous message passing over ¢ € Chan, cap(c) = 0:

0G50 AN 4SSN i

<€17°°'7€i7'°°7€j7'°°7€n7n7€> <£1,...,€;,...,€;,...,

where " = nlz = v].

b, 1, &)

© JPK

11

#4. Channel systems Model checking

Inference rules (Il)
e Asynchronous message passing for ¢ € Chan, cap(c) > 0:

— receive a value along channel ¢ and assign it to variable zx:

0200 A len(é(e) =k>0 A &(c) = vr...up
<£17"'7€i7"'7£n7777€>L><€17"'7627"'7£n777,7£,>

where n' = nlz :=vi] and & = &|c = vy ... vg].

— transmit value v € dom(c) over channel ¢:

0S50 A len(é(e)) =k <cap(e) A E(e) = vr...up
<€1,...,£i,...,€n,n,€>L><€1,...,£;,...,£n,77,€/>

where ¢ = £|c:= v vy, .. v V).

© JPK 12

#4. Channel systems

Model checking

Handling unexpected messages

sender S timer | receiver R | channel c channel d | event

snd_-msg(0) | off wait(0) %) %)

st_tmr(0) off wait(0) (m, 0) %) message with bit O
transmitted

wait(0) on wait(0) (m, 0) %)

snd_-msg(0) | off wait(0) (m, 0) %) timeout

st_tmr(0) off wait(0) (m,0) (m,0) | @ retransmission

st_tmr(0) off pr-msg(0) | (m,O0) %) receiver reads
first message

st_tmr(0) off snd_ack(0) | (m,0) @

st_tmr(0) off wait(1) (m, 0) 0 receiver changes
into mode-1

st_tmr(0) off pr-msg(1l) | @ 0 receiver reads
retransmission

st_tmr(0) off wait(1) %) 0 and ignores it

© JPK

13

#4. Channel systems Model checking

nanoPromela

e Promela (Process Meta Language) is modeling language for SPIN

— most widely used model checker SPIN
— developed by Gerard Holzmann (Bell Labs, NASA JPL)
— ACM Software Award 2002

e nanoPromela is the core of Promela

— shared variables and channel-based communication
— formal semantics of a Promela model is a channel system
— processes are defined by means of a guarded command language

e NO actions, statements describe effect of actions

© JPK 14

#4. Channel systems Model checking

nanoPromela
nanoPromela-program P = [Py]|...|P,] with P; processes

A process is specified by a statement:

stmt n= skip | z:=expr | c?z | clexpr |

stmt; ; stmt, | at oni c{assignments} |

if g =stmty ... :g,=stmt, fi |
do :g¢gy=stmty ... :g,=stmt, do
assighments ;= 1z := expry; ro (= expry; ... Ty = expr,,

x 1S a variable in Var, expr an expression and ¢ a channel, g; a guard

assume the Promela specification is type-consistent

© JPK 15

#4. Channel systems Model checking

Conditional statements

If :: g1 = stmt; ... :: g, = stmt,, fi
e Nondeterministic choice between statements stmt; for which g; holds

e Test-and-set semantics: (deviation from Promela)

— guard evaluation + selection of enabled command + execution first atomic step
of selected statement is all performed atomically

e The if—fi—command blocks if no guard holds

— parallel processes may unblock a process by changing shared variables
— e.g.,when y=0,if ::y >0 = x := 42 fi waits until y exceeds 0

e Standard abbreviations:

— if g then stmt; else stmt; fi = if :: g = stmt; :: =g = stmt; fi
— ifgthenstmt; fi = if :: g = stmt; :: =g = ski pfi

© JPK 16

#4. Channel systems

Model checking

lteration statements

do :g; = stmt; ... :: g,, = stmt,, od

e Iterative execution of nondeterministic choice among g, = stmt;

— where guard g; holds in the current state

e No blocking if all guards are violated; instead, loop is aborted

e do :: g = stmt od = while ¢ do stmt od

e NoO break-statements to abort a loop

(deviation from Promela)

© JPK

17

#4. Channel systems Model checking

Peterson’s algorithm

The nanoPromela-code of process P; is given by the statement:

do : true = skip;
atom c{b, :=true;z := 2};
if = (x=1)V-by = crity :=true fi
at om c{crit; := false; b, := false}
od

© JPK 18

#4. Channel systems Model checking

Beverage vending machine

The following nanoPromela program describes its behaviour:

do : true =
ski p;
if . nsprite >0 = nsprite := nsprite — 1

nbeer >0 = nbeer:=nbeer—1
nsprite = nbeer =0 = ski p
fi
true = at om c{nbeer := max; nsprite := max}
od

© JPK 19

#4. Channel systems Model checking

Formal semantics

The semantics of a nanoPromela-statement over (Var,Chan) is a
program graph over (Var, Chan).

The program graphs PGq,...,PG,, for the processes P,,...,P, of a

nanoPromela-program P = [Py]...|P,] constitute a channel system
over (Var,Chan)

Example:

loop = do @ x>1 = y:=x+y
y<x = x:=0;,y:==x
od

© JPK 20

#4. Channel systems

Model checking

Sub-statements

© JPK

21

#4. Channel systems Model checking

Inference rules

ski p rued, exit

where id denotes an action that does not change the values of the variables

true : assign(x, expr)

x = expr exit

assign(x, expr) denotes the action that only changes x, no other variables

clexpr
e

? . .
clr —= exit clexpr exit

© JPK 22

#4. Channel systems Model checking

Inference rules

true : am

at om c{x; :=expry;...;x, = expr,, } > exit

where oy = id, o; = Effect(assign(z;, expr,), Effect(a;—1,n)) for1 < ¢ < m

stmt; &% stmt| # exit
stmt;; stmt, £ stmt]; stmt,

stmt; = exit
stmt; ; stmt, <= stmt,

© JPK 23

#4. Channel systems

Model checking

stmt;

Inference ru

les

stmt; stmt

cond_cmd

—% stmt], #£ exit

loop

giNh:«

giNh:a

stmt;

stmt;

—= exit

stmt;; loop

loop

|00p —g1/\...\7gn

> exit

giNh:«

loop

© JPK

24

#4. Channel systems Model checking

Overview Lecture #4

e Concurrency

— The interleaving paradigm

e Communication principles

— Shared variable “communication”
— Handshaking
— Synchronous communication

e Channel systems

= The state-space explosion problem

© JPK 25

#4. Channel systems Model checking

Sequential programs

e The # states of a simple program graph is:

| #program locations | - || |dom(x)]

variable x

= number of states grows exponentially in the number of program variables
— N variables with k possible values each yields k” states
— this is called the state-space explosion problem

e A program with 10 locations, 3 bools, 5 integers (in range 0. ..9):

10 - 2% - 10° = 800, 000 states

e Adding a single 50-positions bit-array yields 800, 000-2°" states

© JPK 26

#4. Channel systems Model checking

Concurrent programs

e The # statesof P = P, | ... | P, is maximally:

#states of P; x ... x #states of P,

=+ states grows exponentially with the number of components
e The composition of NV components of size k each yields £V states

e This is called the state-space explosion problem

© JPK 27

#4. Channel systems Model checking

Dijkstra’s mutual exclusion program

e two bit-arrays of size NV

e global variable k

— withvalueinl,..., N

e |ocal variable [

— withvalueinl,..., N

® 6 program locations per process

= totally 2*¥ - N - (6 N)" states

© JPK 28

#4. Channel systems Model checking

Channel systems

e Asynchronous communication of processes via channels

— each channel ¢ has a bounded capacity cap(c)
— if a channel has capacity 0, we obtain handshaking

e # states of system with N components and K channels is:

variable x

N
H(\#program Iocations\ H | dom/(x > H\dom) |capes)

this is the underlying structure of Promela

© JPK 29

#4. Channel systems Model checking

The alternating bit protocol

cl{m,0) d?x
snd_msg tmr_on
r=1": timeout r=Vu:
tmr_off timeout tmr_off
tmr_on _msg(l)
d?x cl(m,1)

channel capacity 10, and datums are bits, yields 2-8-6-4'Y.2'0 = 3.2 ~ 10! states

© JPK 30

#4. Channel systems Model checking

Summary of Chapter 2

Transition systems are fundamental for modeling software and hardware
Interleaving = execution of independent concurrent processes by nondeterminism
For shared variable communication use composition on program graphs
Handshaking on a set H of actions amounts to

— executing action € H autonomously (= interleaving)

— those in H simultaneously

e Channel systems = program graphs + first-in first-out communication channels
— handshaking for channels of capacity 0

— asynchronous message passing when capacity exceeds O
— semantical model of Promela

e Size of transition systems grows exponentially
— in the number of concurrent components and the number of variables

© JPK 31

