
Linear-Time Properties
Lecture #5 of Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling and Verification

E-mail: katoen@cs.rwth-aachen.de

April 17, 2007

c© JPK

#5: Linear-time properties Model checking

Overview Lecture #5

• Paths and traces

• Linear-time (LT) properties

• Trace equivalence and LT properties

• Safety properties and invariants

c© JPK 1

#5: Linear-time properties Model checking

Summary of Chapter 2

• Transition systems are fundamental for modeling software and hardware

• Interleaving = execution of independent concurrent processes by nondeterminism

• For shared variable communication use composition on program graphs

• Handshaking on a set H of actions amounts to
– executing actions �∈ H autonomously and those in H simultaneously

• Channel systems = program graphs + first-in first-out communication channels
– handshaking for channels of capacity 0
– asynchronous message passing when capacity exceeds 0
– semantical model of Promela

• Size of transition systems grows exponentially
– in the number of concurrent components and the number of variables

what about properties of transition systems?

c© JPK 2

#5: Linear-time properties Model checking

Recall model checking

system model

error

system

violated +

Model Checking

requirements

Formalizing Modeling

location

property
specification

satisfied
counterexample

Simulation

c© JPK 3

#5: Linear-time properties Model checking

Recall executions

• A finite execution fragment � of TS is an alternating sequence of
states and actions ending with a state:

� = s0 α1 s1 α2 . . . αn sn such that si
αi+1−−−−→ si+1 for all 0 � i < n.

• An infinite execution fragment ρ of TS is an infinite, alternating
sequence of states and actions:

ρ = s0 α1 s1 α2 s2 α3 . . . such that si
αi+1−−−−→ si+1 for all 0 � i.

• An execution of TS is an initial, maximal execution fragment

– a maximal execution fragment is either finite ending in a terminal state, or infinite
– an execution fragment is initial if s0 ∈ I

c© JPK 4

#5: Linear-time properties Model checking

State graph

• The state graph of TS, notation G(TS), is the digraph (V,E)

with vertices V = S and edges E = {(s, s′) ∈ S × S | s′ ∈ Post(s)}
⇒ omit all state and transition labels in TS and ignore being initial

• Post∗(s) is the set of states reachable G(TS) from s

Post∗(C) =
⋃
s∈C

Post∗(s) for C ⊆ S

• The notations Pre∗(s) and Pre∗(C) have analogous meaning

• The set of reachable states: Reach(TS) = Post∗(I)

c© JPK 5

#5: Linear-time properties Model checking

Path fragments

• A path fragment is an execution fragment without actions

• A finite path fragment π̂ of TS is a state sequence:

bπ = s0 s1 . . . sn such that si+1 ∈ Post(si) for all 0 � i < n where n � 0

• An infinite path fragment π of TS is an infinite state sequence:

π = s0 s1 s2 . . . such that si+1 ∈ Post(si) for all i � 0

• A path of TS is an initial, maximal path fragment

– a maximal path fragment is either finite ending in a terminal state, or infinite
– a path fragment is initial if s0 ∈ I

– Paths(s) is the set of maximal path fragments π with first(π) = s

c© JPK 6

#5: Linear-time properties Model checking

Semaphore-based mutual exclusion

wait1

crit1

noncrit1

y := y+1

y := y−1
y > 0 :

wait2

crit2

noncrit2

y := y+1

y := y−1
y > 0 :

PG1 : PG2 :

y=0 means “lock is currently possessed”; y=1 means “lock is free”

c© JPK 7

#5: Linear-time properties Model checking

Transition system TS(PG1 |||PG2)

〈n1, n2, y=1〉

〈w1, n2, y=1〉 〈n1, w2, y=1〉

〈c1, n2, y=0〉 〈w1, w2, y=1〉 〈n1, c2, y=0〉

〈c1, w2, y=0〉 〈w1, c2, y=0〉
y := y−1

y := y−1

y := y+1

y := y+1

c© JPK 8

#5: Linear-time properties Model checking

Example paths

c© JPK 9

#5: Linear-time properties Model checking

Traces

• Actions are mainly used to model the (possibility of) interaction

– synchronous or asynchronous communication

• Here, focus on the states that are visited during executions

– the states themselves are not “observable”, but just their atomic propositions

• Consider sequences of the form L(s0)L(s1)L(s2) . . .

– just register the (set of) atomic propositions that are valid along the execution
– instead of execution s0

α0−−→ s1
α1−−→ s2 . . .

⇒ this is called a trace

• For a transition system without terminal states:

– traces are infinite words over the alphabet 2AP, i.e., they are in
“
2AP

”ω

c© JPK 10

#5: Linear-time properties Model checking

Traces

• Let transition system TS = (S, Act,→, I, AP, L) without terminal
states

– all maximal paths (and excutions) are infinite

• The trace of path fragment π = s0 s1 . . . is trace(π) = L(s0) L(s1) . . .

– the trace of bπ = s0 s1 . . . sn is trace(bπ) = L(s0) L(s1) . . . L(sn)

• The set of traces of a set Π of paths: trace(Π) = { trace(π) | π ∈ Π }

• Traces(s) = trace(Paths(s)) Traces(TS) =
⋃

s∈I Traces(s)

• Tracesfin(s) = trace(Pathsfin(s)) Tracesfin(TS) =
⋃

s∈I Tracesfin(s)

c© JPK 11

#5: Linear-time properties Model checking

Example traces
Let AP = { crit1, crit2 }
Example path:

π = 〈n1, n2, y = 1〉 → 〈w1, n2, y = 1〉 → 〈c1, n2, y = 0〉 →
〈n1, n2, y = 1〉 → 〈n1, w2, y = 1〉 → 〈n1, c2, y = 0〉 → . . .

The trace of this path is the infinite word:

trace(π) = ∅ ∅ { crit1 }∅ ∅ { crit2 }∅ ∅ { crit1 }∅ ∅ { crit2 } . . .

The trace of the finite path fragment:

bπ = 〈n1, n2, y = 1〉 → 〈w1, n2, y = 1〉 → 〈w1, w2, y = 1〉 →
〈w1, c2, y = 0〉 → 〈w1, n2, y = 1〉 → 〈c1, n2, y = 0〉

is:
trace(π̂) = ∅ ∅ ∅ { crit2 }∅ { crit1 }

c© JPK 12

#5: Linear-time properties Model checking

Linear-time properties

• Linear-time properties specify the traces that a TS must exhibit

– LT-property specifies the admissible behaviour of system under consideration

later, a logic will be introduced for specifying LT properties

• A linear-time property (LT property) over AP is a subset of
(
2AP

)ω

– finite words are not needed, as it is assumed that there are no terminal states

• TS (over AP) satisfies LT property P (over AP):

TS |= P if and only if Traces(TS) ⊆ P

– TS satisfies the LT property P if all its “observable” behaviors are admissible
– state s ∈ S satisfies P , notation s |= P , whenever Traces(s) ⊆ P

c© JPK 13

#5: Linear-time properties Model checking

How to specify mutual exclusion?

“Always at most one process is in its critical section”

• Let AP = { crit1, crit2 }
– other atomic propositions are not of any relevance for this property

• Formalization as LT property

Pmutex = set of infinite words A0 A1 A2 . . . with { crit1, crit2 } �⊆ Ai for all 0 � i

• Contained in Pmutex are e.g., the infinite words:

– ({ crit1 } { crit2 })ω and { crit1 } { crit1 } { crit1 } . . . and ∅ ∅ ∅ . . .

– but not { crit1 }∅ { crit1, crit2 } . . . or ∅ { crit1 }, ∅ ∅ { crit1, crit2 }∅ . . .

Does the semaphore-based algorithm satisfy Pmutex?

c© JPK 14

#5: Linear-time properties Model checking

Does the semaphore-based algorithm satisfy Pmutex?

〈n1, n2, y=1〉
∅

〈w1, n2, y=1〉
∅

〈n1, w2, y=1〉
∅

〈c1, n2, y=0〉 { crit1 } 〈w1, w2, y=1〉
∅

〈n1, c2, y=0〉{ crit2 }

〈c1, w2, y=0〉{ crit1 } 〈w1, c2, y=0〉 { crit2 }

Yes as there is no reachable state labeled with { crit1, crit2 }

c© JPK 15

#5: Linear-time properties Model checking

How to specify starvation freedom?

“A process that wants to enter the critical section is eventually able to do so‘”

• Let AP = {wait1, crit1, wait2, crit2 }

• Formalization as LT-property

Pnostarve = set of infinite words A0 A1 A2 . . . such that:

“∞
∃ j. waiti ∈ Aj

”
⇒

“∞
∃ j. criti ∈ Aj

”
for each i ∈ { 1, 2 }

there exist infinitely many:
“∞
∃ j. waiti ∈ Aj

”
≡ (∀k � 0. ∃j > k. waiti ∈ Aj)

Does the semaphore-based algorithm satisfy Pnostarve?

c© JPK 16

#5: Linear-time properties Model checking

Does the semaphore-based algorithm satisfy Pnostarve?

〈n1, n2, y=1〉
∅

〈w1, n2, y=1〉
{ wait1 }

〈n1, w2, y=1〉
{wait2 }

〈c1, n2, y=0〉 { crit1 } 〈w1, w2, y=1〉
{ wait1, wait2 }

〈n1, c2, y=0〉{ crit2 }

〈c1, w2, y=0〉{ crit1, wait2 } 〈w1, c2, y=0〉 { wait1, crit2 }

No. Trace ∅ ({ wait2 } {wait1, wait2 } { crit1, wait2 })
ω ∈ Traces(TS), but �∈ Pnostarve

c© JPK 17

#5: Linear-time properties Model checking

Mutual exclusion algorithm revisited

〈n1, n2, y=1〉

〈w1, n2, y=1〉 〈n1, w2, y=1〉

〈c1, n2, y=0〉 〈w1, w2, y=1〉 〈n1, c2, y=0〉

〈c1, w2, y=0〉 〈w1, c2, y=0〉

this algorithm satisfies Pmutex

c© JPK 18

#5: Linear-time properties Model checking

Refining mutual exclusion algorithm
〈n1, n2, y=1〉

〈w1, n2, y=1〉 〈n1, w2, y=1〉

〈c1, n2, y=0〉 〈w1, w2, y=1〉 〈n1, c2, y=0〉

〈c1, w2, y=0〉 〈w1, c2, y=0〉

this variant algorithm with an omitted edge also satisfies Pmutex

c© JPK 19

#5: Linear-time properties Model checking

Trace equivalence and LT properties

For TS and TS′ be transition systems (over AP) without terminal states:

Traces(TS) ⊆ Traces(TS′)

if and only if

for any LT property P : TS′ |= P implies TS |= P

Traces(TS) = Traces(TS′)

if and only if

TS and TS′ satisfy the same LT properties

c© JPK 20

#5: Linear-time properties Model checking

Two beverage vending machines

pay

selectsprite beerτ
τ

pay

select1 select2sprite beer

τ
τ

AP = { pay, sprite, beer }
there is no LT-property that can distinguish between these machines

c© JPK 21

#5: Linear-time properties Model checking

Invariants

• Safety properties ≈ “nothing bad should happen” [Lamport 1977]

• Typical safety property: mutual exclusion property

– the bad thing (having > 1 process in the critical section) never occurs

• Another typical safety property is deadlock freedom

⇒ These properties are in fact invariants

• An invariant is an LT property

– that is given by a condition Φ for the states
– and requires that Φ holds for all reachable states
– e.g., for mutex property Φ ≡ ¬crit1 ∨ ¬crit2

c© JPK 22

#5: Linear-time properties Model checking

Invariants

• An LT property Pinv over AP is an invariant if there is a propositional
logic formula Φ over AP such that:

Pinv =
{

A0A1A2 . . . ∈ (
2AP)ω | ∀j � 0. Aj |= Φ

}

– Φ is called an invariant condition of Pinv

• Note that

TS |= Pinv iff trace(π) ∈ Pinv for all paths π in TS
iff L(s) |= Φ for all states s that belong to a path of TS
iff L(s) |= Φ for all states s ∈ Reach(TS)

• Φ has to be fulfilled by all initial states and

– satisfaction of Φ is invariant under all transitions in the reachable fragment of TS

c© JPK 23

#5: Linear-time properties Model checking

Checking an invariant

• Checking an invariant for the propositional formula Φ

= check the validity of Φ in every reachable state
⇒ use a slight modification of standard graph traversal algorithms (DFS and BFS)

– provided the given transition system TS is finite

• Perform a forward depth-first search

– at least one state s is found with s �|= Φ ⇒ the invariance of Φ is violated

• Alternative: backward search

– starts with all states where Φ does not hold
– calculates (by a DFS or BFS) the set

S
s∈S,s�|=Φ Pre∗(s)

c© JPK 24

#5: Linear-time properties Model checking

A naive invariant checking algorithm

Input: finite transition system TS and propositional formula Φ
Output: true if TS satisfies the invariant ”always Φ”, otherwise false

set of state R := ∅; (* the set of visited states *)
stack of state U := ε; (* the empty stack *)
bool b := true; (* all states in R satisfy Φ *)
for all s ∈ I do

if s /∈ R then
visit(s) (* perform a dfs for each unvisited initial state *)

fi
od
return b

c© JPK 25

#5: Linear-time properties Model checking

A naive invariant checking algorithm

procedure visit (state s)
push(s, U); (* push s on the stack *)
R := R ∪ { s }; (* mark s as reachable *)
repeat

s′ := top(U);
if Post(s′) ⊆ R then

pop(U);
b := b ∧ (s′ |= Φ); (* check validity of Φ in s′ *)

else
let s′′ ∈ Post(s′) \ R
push(s′′, U);
R := R ∪ { s′′ }; (* state s′′ is a new reachable state *)

fi
until (U = ε)

endproc

error indication is state refuting Φ

initial path fragment s0 s1 s2 . . . sn with si |= Φ (i �= n) and sn �|= Φ is more useful

c© JPK 26

#5: Linear-time properties Model checking

Invariant checking by DFS

Input: finite transition system TS and propositional formula Φ
Output: ”yes” if TS |= ”always Φ”, otherwise ”no” plus a counterexample

set of states R := ∅; (* the set of reachable states *)
stack of states U := ε; (* the empty stack *)
bool b := true; (* all states in R satisfy Φ *)
while (I \ R �= ∅ ∧ b) do

let s ∈ I \ R; (* choose an arbitrary initial state not in R *)
visit(s); (* perform a DFS for each unvisited initial state *)

od
if b then

return(”yes”) (* TS |= ”always Φ” *)
else

return(”no”, reverse(U)) (* counterexample arises from the stack content *)
fi

c© JPK 27

#5: Linear-time properties Model checking

Invariant checking by DFS

procedure visit (state s)
push(s, U); (* push s on the stack *)
R := R ∪ { s }; (* mark s as reachable *)
repeat

s′ := top(U);
if Post(s′) ⊆ R then

pop(U);
b := b ∧ (s′ |= Φ); (* check validity of Φ in s′ *)

else
let s′′ ∈ Post(s′) \ R
push(s′′, U);
R := R ∪ { s′′ }; (* state s′′ is a new reachable state *)

fi
until ((U = ε) ∨ ¬ b)

endproc

c© JPK 28

#5: Linear-time properties Model checking

Time complexity

• Under the assumption that

– s′ ∈ Post(s) can be encountered in time Θ(|Post(s)|)
⇒ this holds for a representation of Post(s) by adjacency lists

• The time complexity for invariant checking is O(N ∗ (1 + |Φ|) + M)

– where N denotes the number of reachable states, and
– M =

P
s∈S |Post(s)| the number of transitions in the reachable fragment of TS

• The adjacency lists are typically given implicitly

– e.g., by a syntactic description of the concurrent processes as program graphs
– Post(s) is obtained by the rules for the transition relation

c© JPK 29

#5: Linear-time properties Model checking

Safety properties

• Safety properties may impose requirements on finite path fragments

– and cannot be verified by considering the reachable states only

• A safety property which is not an invariant:

– consider a cash dispenser, also known as automated teller machine (ATM)
– property “money can only be withdrawn once a correct PIN has been provided”

⇒ not an invariant, since it is not a state property

• But a safety property:

– any infinite run violating the property has a finite prefix that is “bad”
– i.e., in which money is withdrawn without issuing a PIN before

c© JPK 30

#5: Linear-time properties Model checking

Safety properties

• LT property Psafe over AP is a safety property if

– for all σ ∈
“
2AP

”ω

\ Psafe there exists a finite prefix bσ of σ such that:

Psafe ∩
n

σ
′ ∈

“
2

AP
”ω

| bσ is a prefix of σ′
o

| {z }
all possible extensions of bσ

= ∅

– any such finite word bσ is called a bad prefix for Psafe

• Minimal bad prefix for Psafe:

– is a bad prefix bσ for Psafe for which no proper prefix of bσ is a bad prefix for Psafe

⇒ minimal bad prefixes are bad prefixes of minimal length

c© JPK 31

#5: Linear-time properties Model checking

Example safety properties

c© JPK 32

#5: Linear-time properties Model checking

Safety properties and finite traces

For transition system TS without terminal states

and safety property Psafe:

TS |= Psafe if and only if Tracesfin(TS) ∩ BadPref(Psafe) = ∅

where BadPref(Psafe) is the set of bad prefixes of Psafe

c© JPK 33

