

Linear-Time Properties

Lecture #5 of Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling and Verification

E-mail: katoen@cs.rwth-aachen.de

April 17, 2007

Overview Lecture #5

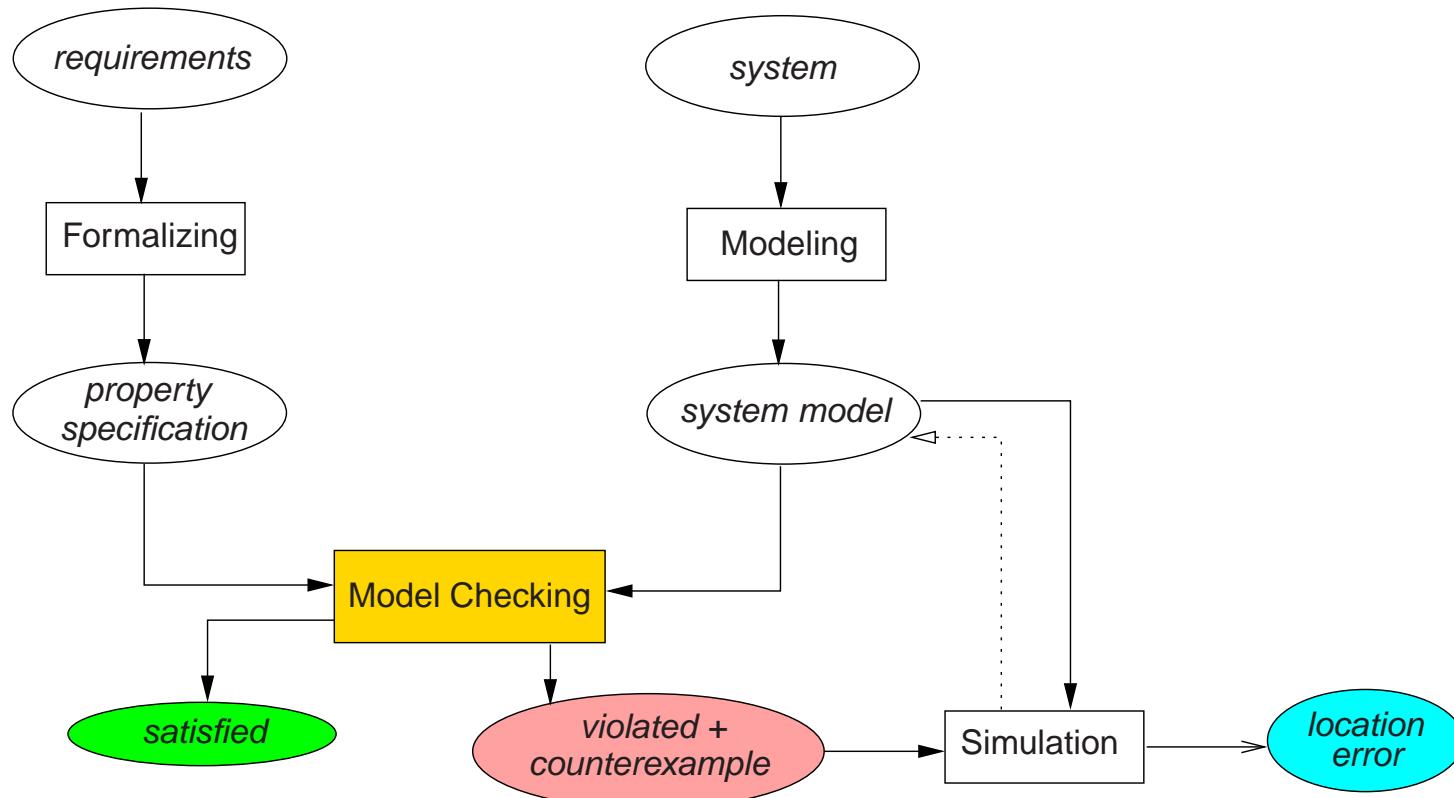
- Paths and traces
- Linear-time (LT) properties
- Trace equivalence and LT properties
- Safety properties and invariants

Summary of Chapter 2

- Transition systems are fundamental for modeling software and hardware
- Interleaving = execution of independent concurrent processes by nondeterminism
- For shared variable communication use composition on program graphs
- Handshaking on a set H of actions amounts to
 - executing actions $\notin H$ autonomously and those in H simultaneously
- Channel systems = program graphs + first-in first-out communication channels
 - handshaking for channels of capacity 0
 - asynchronous message passing when capacity exceeds 0
 - semantical model of Promela
- Size of transition systems grows exponentially
 - in the number of concurrent components and the number of variables

what about properties of transition systems?

Recall model checking



Recall executions

- A *finite execution fragment* ϱ of TS is an alternating sequence of states and actions ending with a state:

$$\varrho = s_0 \alpha_1 s_1 \alpha_2 \dots \alpha_n s_n \text{ such that } s_i \xrightarrow{\alpha_{i+1}} s_{i+1} \text{ for all } 0 \leq i < n.$$

- An *infinite execution fragment* ρ of TS is an infinite, alternating sequence of states and actions:

$$\rho = s_0 \alpha_1 s_1 \alpha_2 s_2 \alpha_3 \dots \text{ such that } s_i \xrightarrow{\alpha_{i+1}} s_{i+1} \text{ for all } 0 \leq i.$$

- An *execution* of TS is an initial, maximal execution fragment
 - a *maximal* execution fragment is either finite ending in a terminal state, or infinite
 - an execution fragment is *initial* if $s_0 \in I$

State graph

- The *state graph* of TS , notation $G(TS)$, is the digraph (V, E)
 with vertices $V = S$ and edges $E = \{(s, s') \in S \times S \mid s' \in Post(s)\}$
 \Rightarrow omit all state and transition labels in TS and ignore being initial
- $Post^*(s)$ is the set of states reachable $G(TS)$ from s

$$Post^*(C) = \bigcup_{s \in C} Post^*(s) \quad \text{for } C \subseteq S$$

- The notations $Pre^*(s)$ and $Pre^*(C)$ have analogous meaning
- The set of reachable states: $Reach(TS) = Post^*(I)$

Path fragments

- A path fragment is an execution fragment without actions

- A *finite path fragment* $\hat{\pi}$ of TS is a state sequence:

$$\hat{\pi} = s_0 s_1 \dots s_n \text{ such that } s_{i+1} \in Post(s_i) \text{ for all } 0 \leq i < n \text{ where } n \geq 0$$

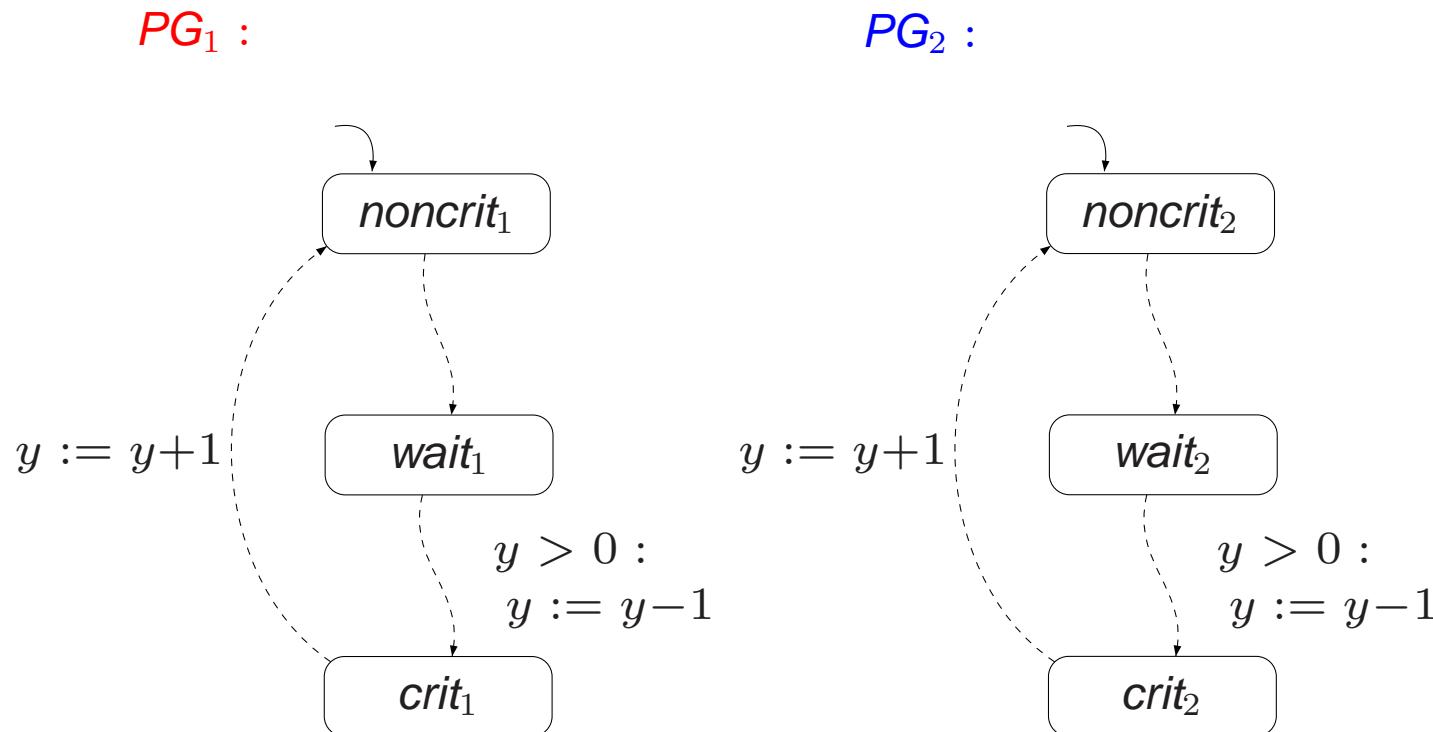
- An *infinite path fragment* π of TS is an infinite state sequence:

$$\pi = s_0 s_1 s_2 \dots \text{ such that } s_{i+1} \in Post(s_i) \text{ for all } i \geq 0$$

- A *path* of TS is an initial, maximal path fragment

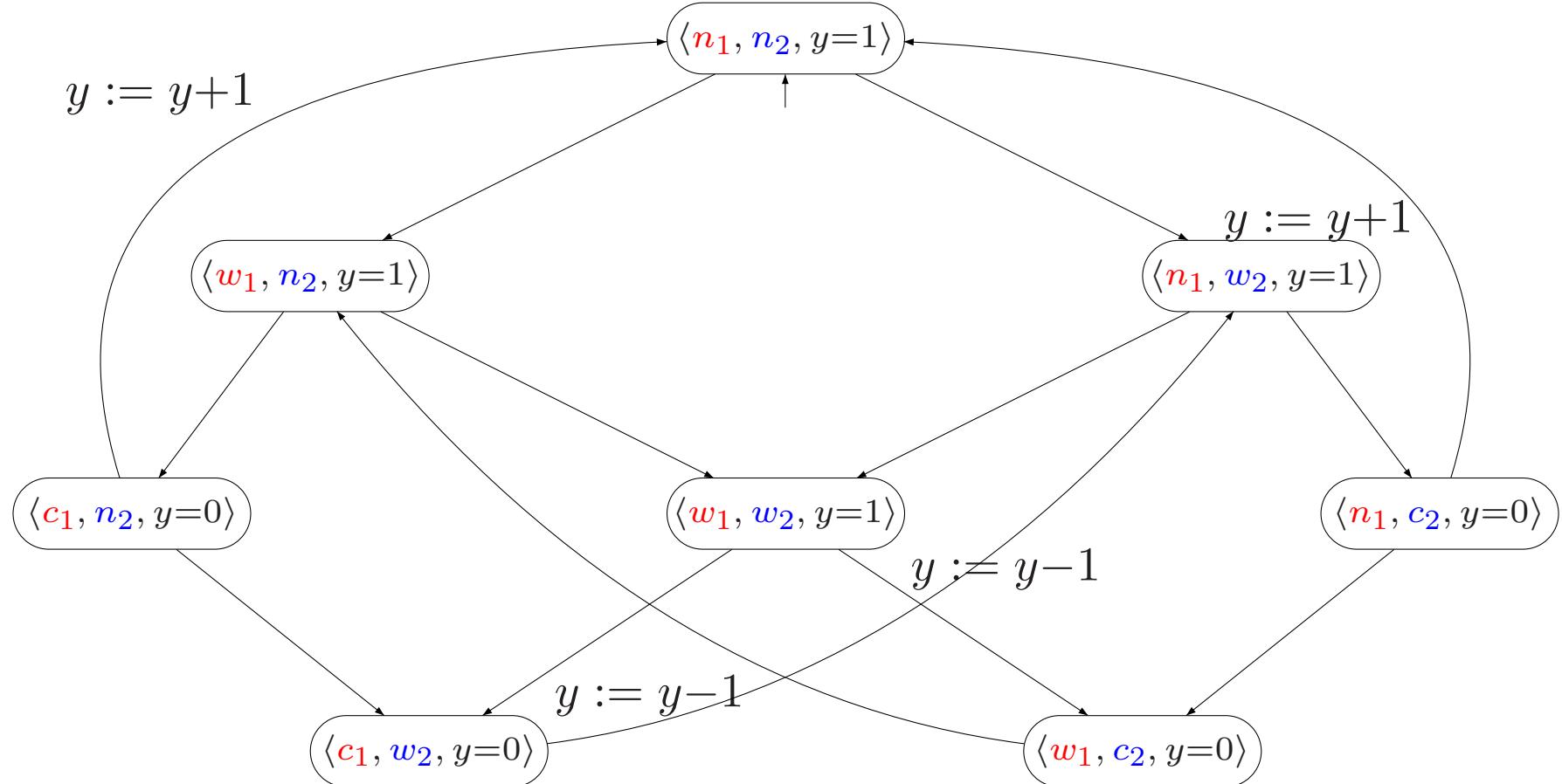
- a *maximal* path fragment is either finite ending in a terminal state, or infinite
- a path fragment is *initial* if $s_0 \in I$
- $Paths(s)$ is the set of maximal path fragments π with $first(\pi) = s$

Semaphore-based mutual exclusion



$y=0$ means “lock is currently possessed”; $y=1$ means “lock is free”

Transition system $TS(PG_1 \parallel\!\!\parallel PG_2)$



Example paths

Traces

- Actions are mainly used to model the (possibility of) interaction
 - synchronous or asynchronous communication
- Here, focus on the states that are visited during executions
 - the states themselves are not “observable”, but just their atomic propositions
- Consider sequences of the form $L(s_0) L(s_1) L(s_2) \dots$
 - just register the (set of) atomic propositions that are valid along the execution
 - instead of execution $s_0 \xrightarrow{\alpha_0} s_1 \xrightarrow{\alpha_1} s_2 \dots$
⇒ this is called a *trace*
- For a transition system without terminal states:
 - traces are infinite words over the alphabet 2^{AP} , i.e., they are in $(2^{AP})^\omega$

Traces

- Let transition system $TS = (S, Act, \rightarrow, I, AP, L)$ **without terminal states**
 - all maximal paths (and executions) are infinite
- The *trace* of path fragment $\pi = s_0 s_1 \dots$ is $trace(\pi) = L(s_0) L(s_1) \dots$
 - the trace of $\widehat{\pi} = s_0 s_1 \dots s_n$ is $trace(\widehat{\pi}) = L(s_0) L(s_1) \dots L(s_n)$
- The set of traces of a set Π of paths: $trace(\Pi) = \{ trace(\pi) \mid \pi \in \Pi \}$
- $Traces(s) = trace(Paths(s))$ $Traces(TS) = \bigcup_{s \in I} Traces(s)$
- $Traces_{fin}(s) = trace(Paths_{fin}(s))$ $Traces_{fin}(TS) = \bigcup_{s \in I} Traces_{fin}(s)$

Example traces

Let $AP = \{ crit_1, crit_2 \}$

Example path:

$$\begin{aligned}\pi = & \langle n_1, n_2, y = 1 \rangle \rightarrow \langle w_1, n_2, y = 1 \rangle \rightarrow \langle c_1, n_2, y = 0 \rangle \rightarrow \\ & \langle n_1, n_2, y = 1 \rangle \rightarrow \langle n_1, w_2, y = 1 \rangle \rightarrow \langle n_1, c_2, y = 0 \rangle \rightarrow \dots\end{aligned}$$

The trace of this path is the infinite word:

$$trace(\pi) = \emptyset \emptyset \{ crit_1 \} \emptyset \emptyset \{ crit_2 \} \emptyset \emptyset \{ crit_1 \} \emptyset \emptyset \{ crit_2 \} \dots$$

The trace of the finite path fragment:

$$\begin{aligned}\widehat{\pi} = & \langle n_1, n_2, y = 1 \rangle \rightarrow \langle w_1, n_2, y = 1 \rangle \rightarrow \langle w_1, w_2, y = 1 \rangle \rightarrow \\ & \langle w_1, c_2, y = 0 \rangle \rightarrow \langle w_1, n_2, y = 1 \rangle \rightarrow \langle c_1, n_2, y = 0 \rangle\end{aligned}$$

is:

$$trace(\widehat{\pi}) = \emptyset \emptyset \emptyset \{ crit_2 \} \emptyset \{ crit_1 \}$$

Linear-time properties

- Linear-time properties specify the traces that a TS must exhibit
 - LT-property specifies the admissible behaviour of system under consideration
 - later, a logic will be introduced for specifying LT properties
- A *linear-time property* (LT property) over AP is a subset of $(2^{AP})^\omega$
 - finite words are not needed, as it is assumed that there are *no terminal states*
- TS (over AP) *satisfies* LT property P (over AP):
$$TS \models P \quad \text{if and only if} \quad \text{Traces}(TS) \subseteq P$$
 - TS satisfies the LT property P if all its “observable” behaviors are admissible
 - state $s \in S$ satisfies P , notation $s \models P$, whenever $\text{Traces}(s) \subseteq P$

How to specify mutual exclusion?

“Always at most one process is in its critical section”

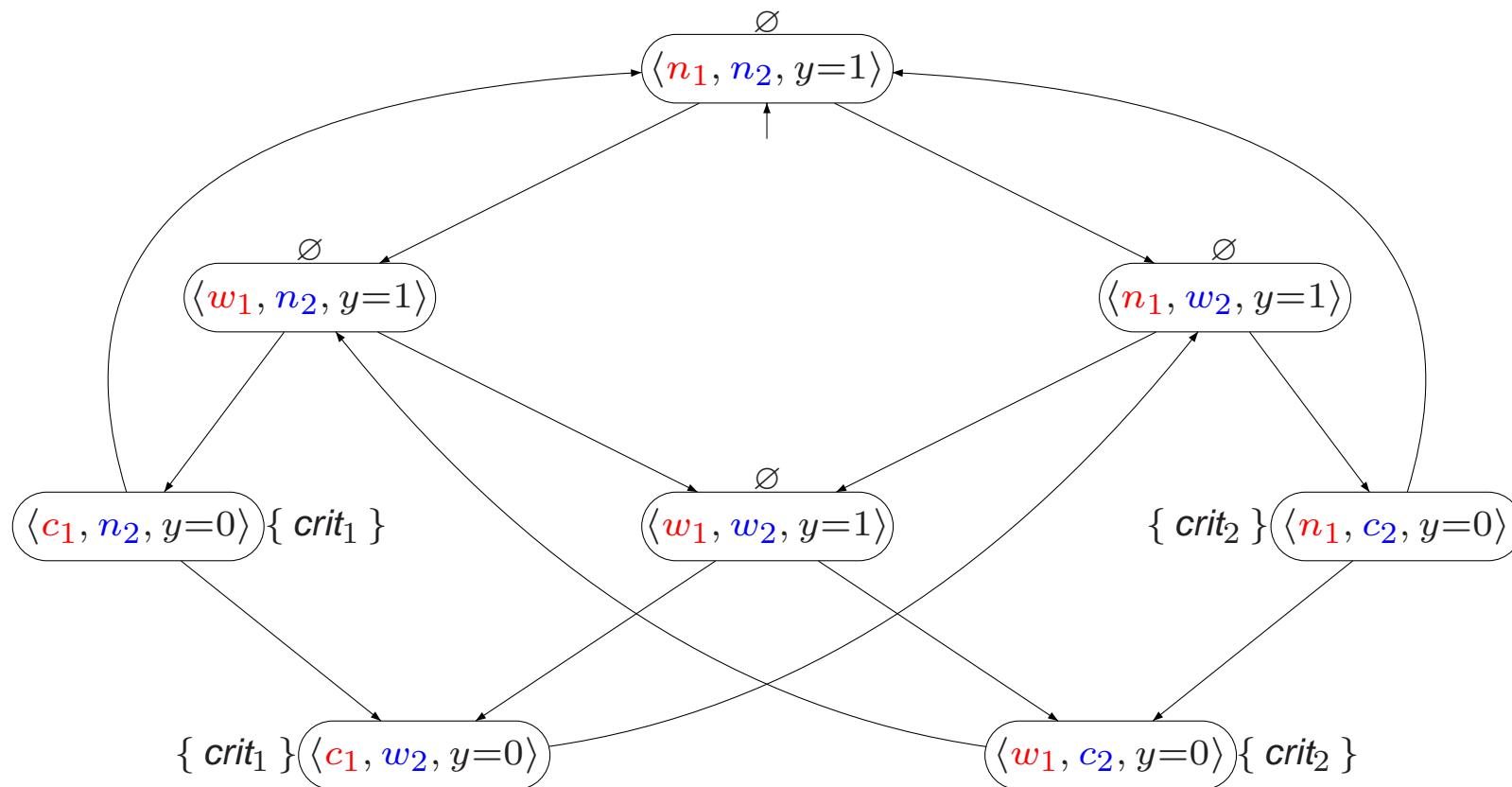
- Let $AP = \{ crit_1, crit_2 \}$
 - other atomic propositions are not of any relevance for this property
- Formalization as LT property

P_{mutex} = set of infinite words $A_0 A_1 A_2 \dots$ with $\{ crit_1, crit_2 \} \not\subseteq A_i$ for all $0 \leq i$

- Contained in P_{mutex} are e.g., the infinite words:
 - $(\{ crit_1 \} \{ crit_2 \})^\omega$ and $\{ crit_1 \} \{ crit_1 \} \{ crit_1 \} \dots$ and $\emptyset \emptyset \emptyset \dots$
 - but not $\{ crit_1 \} \emptyset \{ crit_1, crit_2 \} \dots$ or $\emptyset \{ crit_1 \}, \emptyset \emptyset \{ crit_1, crit_2 \} \emptyset \dots$

Does the semaphore-based algorithm satisfy P_{mutex} ?

Does the semaphore-based algorithm satisfy P_{mutex} ?



Yes as there is no reachable state labeled with $\{ crit_1, crit_2 \}$

How to specify starvation freedom?

“A process that wants to enter the critical section is eventually able to do so”

- Let $AP = \{ \text{wait}_1, \text{crit}_1, \text{wait}_2, \text{crit}_2 \}$
- Formalization as LT-property

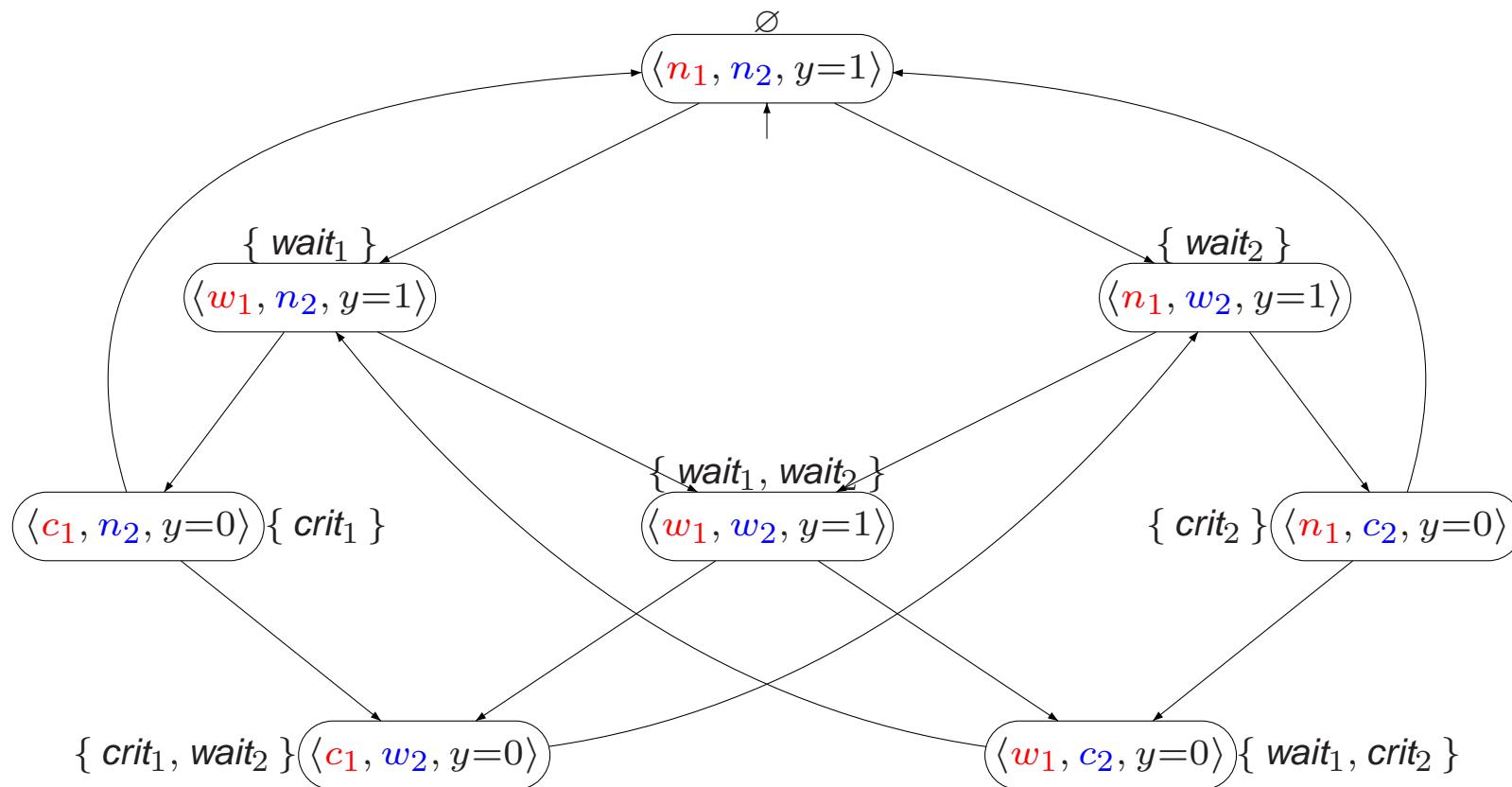
$P_{\text{nostarve}} = \text{set of infinite words } A_0 A_1 A_2 \dots \text{ such that:}$

$$\left(\exists^{\infty} j. \text{wait}_i \in A_j \right) \Rightarrow \left(\exists^{\infty} j. \text{crit}_i \in A_j \right) \quad \text{for each } i \in \{ 1, 2 \}$$

there exist infinitely many: $\left(\exists^{\infty} j. \text{wait}_i \in A_j \right) \equiv (\forall k \geq 0. \exists j > k. \text{wait}_i \in A_j)$

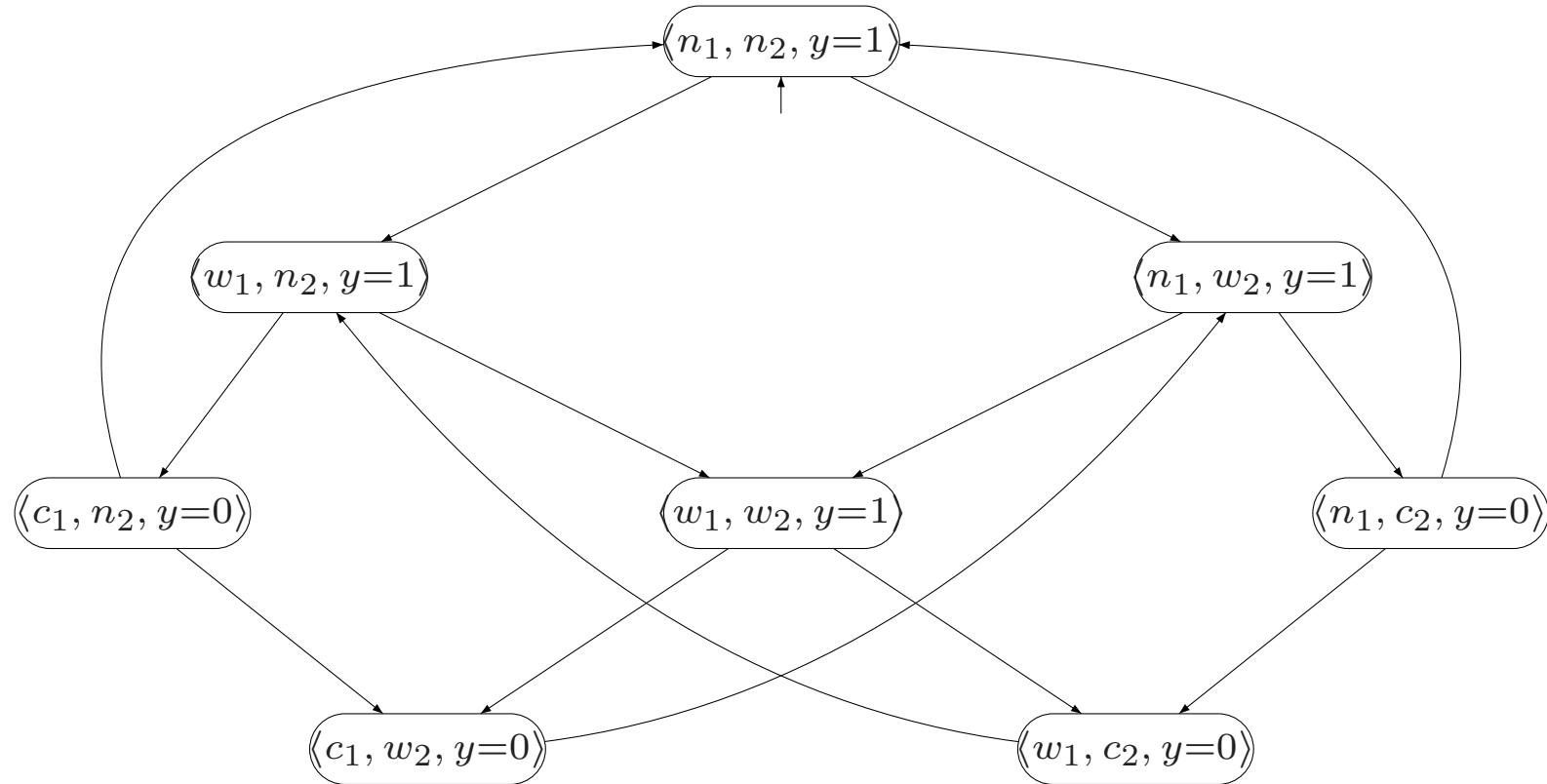
Does the semaphore-based algorithm satisfy P_{nostarve} ?

Does the semaphore-based algorithm satisfy P_{nostarve} ?



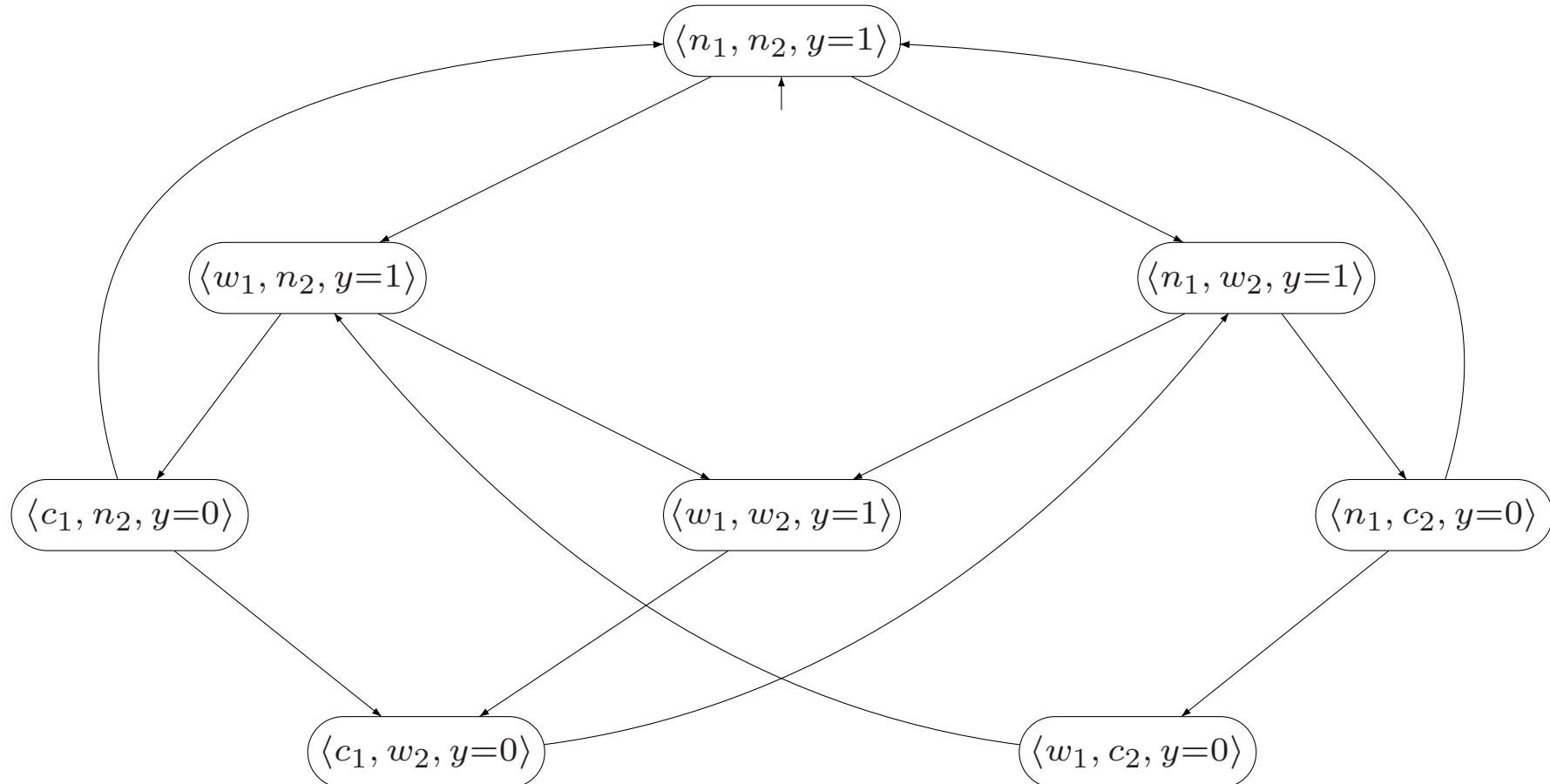
No. Trace $\emptyset \cdot (\{ \text{wait}_2 \} \{ \text{wait}_1, \text{wait}_2 \} \{ \text{crit}_1, \text{wait}_2 \})^\omega \in \text{Traces}(TS)$, but $\notin P_{\text{nostarve}}$

Mutual exclusion algorithm revisited



this algorithm satisfies P_{mutex}

Refining mutual exclusion algorithm



this variant algorithm with an omitted edge also satisfies P_{mutex}

Trace equivalence and LT properties

For TS and TS' be transition systems (over AP) without terminal states:

$$Traces(TS) \subseteq Traces(TS')$$

if and only if

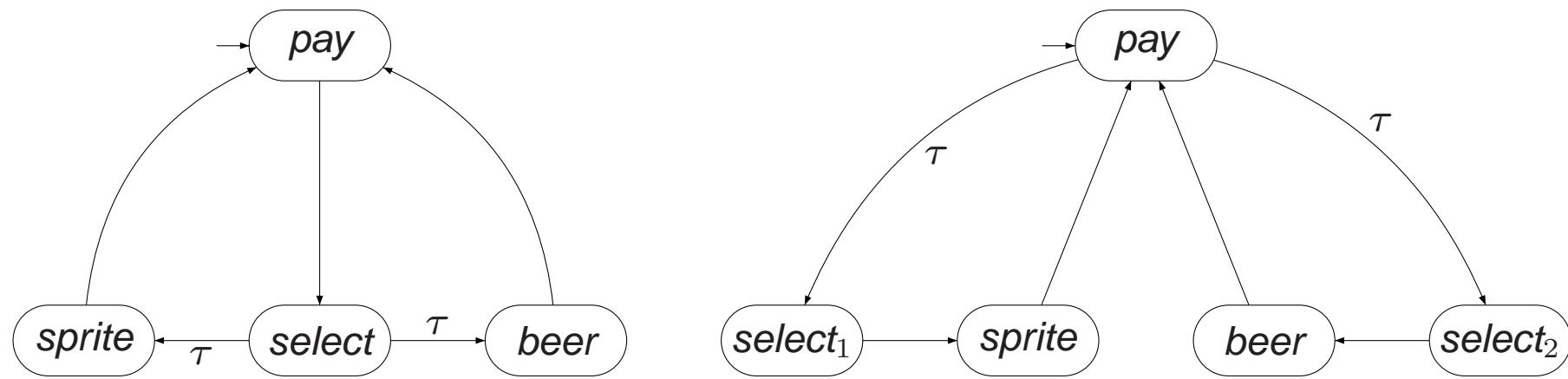
for any LT property P : $TS' \models P$ implies $TS \models P$

$$Traces(TS) = Traces(TS')$$

if and only if

TS and TS' satisfy the same LT properties

Two beverage vending machines



$$AP = \{ pay, sprite, beer \}$$

there is no LT-property that can distinguish between these machines

Invariants

- Safety properties \approx “nothing bad should happen” [Lamport 1977]
- Typical safety property: mutual exclusion property
 - the bad thing (having > 1 process in the critical section) never occurs
- Another typical safety property is deadlock freedom

\Rightarrow These properties are in fact **invariants**

- An **invariant** is an LT property
 - that is given by a **condition** Φ for the states
 - and requires that Φ holds **for all reachable states**
 - e.g., for mutex property $\Phi \equiv \neg crit_1 \vee \neg crit_2$

Invariants

- An LT property P_{inv} over AP is an *invariant* if there is a propositional logic formula Φ over AP such that:

$$P_{inv} = \{ A_0 A_1 A_2 \dots \in (2^{AP})^\omega \mid \forall j \geq 0. A_j \models \Phi \}$$

- Φ is called an *invariant condition* of P_{inv}
- Note that
 - $TS \models P_{inv}$ iff $trace(\pi) \in P_{inv}$ for all paths π in TS
 - iff $L(s) \models \Phi$ for all states s that belong to a path of TS
 - iff $L(s) \models \Phi$ for all states $s \in \text{Reach}(TS)$
- Φ has to be fulfilled by all initial states and
 - satisfaction of Φ is invariant under all transitions in the reachable fragment of TS

Checking an invariant

- Checking an invariant for the propositional formula Φ
 - = check the validity of Φ in every reachable state
 - \Rightarrow use a slight modification of standard **graph traversal** algorithms (DFS and BFS)
 - provided the given transition system TS is *finite*
- Perform a forward depth-first search
 - at least one state s is found with $s \not\models \Phi \Rightarrow$ the invariance of Φ is violated
- Alternative: backward search
 - starts with all states where Φ does not hold
 - calculates (by a DFS or BFS) the set $\bigcup_{s \in S, s \not\models \Phi} \text{Pre}^*(s)$

A naive invariant checking algorithm

Input: finite transition system TS and propositional formula Φ

Output: true if TS satisfies the invariant "always Φ ", otherwise false

```
set of state  $R := \emptyset$ ;                                (* the set of visited states *)
stack of state  $U := \varepsilon$ ;                                (* the empty stack *)
bool  $b := \text{true}$ ;                                     (* all states in  $R$  satisfy  $\Phi$  *)
for all  $s \in I$  do
  if  $s \notin R$  then
    visit( $s$ )                                              (* perform a dfs for each unvisited initial state *)
  fi
od
return  $b$ 
```

A naive invariant checking algorithm

```

procedure visit (state  $s$ )
   $push(s, U)$ ;                                     (* push  $s$  on the stack *)
   $R := R \cup \{ s \}$ ;                           (* mark  $s$  as reachable *)
  repeat
     $s' := top(U)$ ;
    if  $Post(s') \subseteq R$  then
       $pop(U)$ ;
       $b := b \wedge (s' \models \Phi)$ ;           (* check validity of  $\Phi$  in  $s'$  *)
    else
      let  $s'' \in Post(s') \setminus R$ 
       $push(s'', U)$ ;
       $R := R \cup \{ s'' \}$ ;                  (* state  $s''$  is a new reachable state *)
    fi
  until ( $U = \varepsilon$ )
endproc

```

error indication is state refuting Φ

initial path fragment $s_0 s_1 s_2 \dots s_n$ with $s_i \models \Phi$ ($i \neq n$) and $s_n \not\models \Phi$ is more useful

Invariant checking by DFS

Input: finite transition system TS and propositional formula Φ

Output: "yes" if $TS \models \text{"always } \Phi\text{"}$, otherwise "no" plus a counterexample

```

set of states  $R := \emptyset$ ;                                (* the set of reachable states *)
stack of states  $U := \varepsilon$ ;                                (* the empty stack *)
bool  $b := \text{true}$ ;                                         (* all states in  $R$  satisfy  $\Phi$  *)
while ( $I \setminus R \neq \emptyset \wedge b$ ) do
  let  $s \in I \setminus R$ ;                                     (* choose an arbitrary initial state not in  $R$  *)
  visit( $s$ );                                                 (* perform a DFS for each unvisited initial state *)
od
if  $b$  then
  return("yes")                                              (*  $TS \models \text{"always } \Phi\text{"}$  *)
else
  return("no", reverse( $U$ ))                                    (* counterexample arises from the stack content *)
fi

```

Invariant checking by DFS

```

procedure visit (state  $s$ )
   $push(s, U)$ ;                                     (* push  $s$  on the stack *)
   $R := R \cup \{ s \}$ ;                           (* mark  $s$  as reachable *)
  repeat
     $s' := top(U)$ ;
    if  $Post(s') \subseteq R$  then
       $pop(U)$ ;
       $b := b \wedge (s' \models \Phi)$ ;           (* check validity of  $\Phi$  in  $s'$  *)
    else
      let  $s'' \in Post(s') \setminus R$ 
       $push(s'', U)$ ;
       $R := R \cup \{ s'' \}$ ;                   (* state  $s''$  is a new reachable state *)
    fi
    until  $((U = \varepsilon) \vee \neg b)$ 
endproc

```

Time complexity

- Under the assumption that
 - $s' \in Post(s)$ can be encountered in time $\Theta(|Post(s)|)$
⇒ this holds for a representation of $Post(s)$ by adjacency lists
- The time complexity for invariant checking is $\mathcal{O}(N * (1 + |\Phi|) + M)$
 - where N denotes the number of reachable states, and
 - $M = \sum_{s \in S} |Post(s)|$ the number of transitions in the reachable fragment of TS
- The adjacency lists are typically given *implicitly*
 - e.g., by a syntactic description of the concurrent processes as program graphs
 - $Post(s)$ is obtained by the rules for the transition relation

Safety properties

- Safety properties may impose requirements on finite path fragments
 - and cannot be verified by considering the reachable states only
- A safety property which is not an invariant:
 - consider a cash dispenser, also known as automated teller machine (ATM)
 - property “money can only be withdrawn once a correct PIN has been provided”
⇒ not an invariant, since it is not a state property
- But a safety property:
 - any infinite run violating the property has a finite prefix that is “bad”
 - i.e., in which money is withdrawn without issuing a PIN before

Safety properties

- LT property P_{safe} over AP is a *safety property* if
 - for all $\sigma \in (2^{AP})^\omega \setminus P_{safe}$ there exists a finite prefix $\widehat{\sigma}$ of σ such that:

$$P_{safe} \cap \underbrace{\left\{ \sigma' \in (2^{AP})^\omega \mid \widehat{\sigma} \text{ is a prefix of } \sigma' \right\}}_{\text{all possible extensions of } \widehat{\sigma}} = \emptyset$$
 - any such finite word $\widehat{\sigma}$ is called a **bad prefix** for P_{safe}
- *Minimal* bad prefix for P_{safe} :
 - is a bad prefix $\widehat{\sigma}$ for P_{safe} for which no proper prefix of $\widehat{\sigma}$ is a bad prefix for P_{safe}
 - ⇒ minimal bad prefixes are bad prefixes of minimal length

Example safety properties

Safety properties and finite traces

For transition system TS without terminal states

and safety property P_{safe} :

$TS \models P_{safe}$ if and only if $Traces_{fin}(TS) \cap BadPref(P_{safe}) = \emptyset$

where $BadPref(P_{safe})$ is the set of bad prefixes of P_{safe}