© JPK

Linear-Time Properties
Lecture #5 of Model Checking

Joost-Pieter Katoen
Lehrstuhl 2: Software Modeling and Verification

E-mail: kat oen@s. r wt h- aachen. de

April 17, 2007

#5: Linear-time properties

Model checking

Overview Lecture #5

Paths and traces
Linear-time (LT) properties
Trace equivalence and LT properties

Safety properties and invariants

© JPK

#5: Linear-time properties Model checking

Summary of Chapter 2

Transition systems are fundamental for modeling software and hardware
Interleaving = execution of independent concurrent processes by nondeterminism
For shared variable communication use composition on program graphs
Handshaking on a set H of actions amounts to

— executing actions € H autonomously and those in H simultaneously

e Channel systems = program graphs + first-in first-out communication channels
— handshaking for channels of capacity 0
— asynchronous message passing when capacity exceeds O
— semantical model of Promela
e Size of transition systems grows exponentially
— in the number of concurrent components and the number of variables

what about properties of transition systems?

© JPK 2

#5: Linear-time properties

Model checking

requirements

Formalizing

property
specification

Recall model checking

Model Checking

Modeling

system model

violated +
counterexample

y

Simulation

location
= error

© JPK

#5: Linear-time properties Model checking

Recall executions

e A finite execution fragment o of TS is an alternating sequence of
states and actions ending with a state:

0 = SpQq S1Qa ...0Q,S, SUCH thatSi—aﬂ—)Si_Fl forall 0 <7 < n.

e An infinite execution fragment p of TS is an infinite, alternating
sequence of states and actions:

p = SoQ S, Q2 Sy ... such that s; —+Ls s;11 forall 0 <.

e An execution of TS is an initial, maximal execution fragment

— amaximal execution fragment s either finite ending in a terminal state, or infinite
— an execution fragment is initial if sq € I

© JPK 4

#5: Linear-time properties Model checking

State graph

e The state graph of TS, notation G(TS), is the digraph (V, F)

with vertices V' = S and edges E = {(s,s’) € S x S | s’ € Post(s)}
=- omit all state and transition labels in TS and ignore being initial

e Post™(s) is the set of states reachable G(TS) from s

Post™(C) = | J Post™(s) forC C S

e The notations Pre”(s) and Pre”(C') have analogous meaning

e The set of reachable states: Reach(TS) Post™ (1)

© JPK 5

#5: Linear-time properties Model checking

Path fragments
e A path fragment is an execution fragment without actions

e A finite path fragment 7 of TS is a state sequence:

T = S9S1...Sp, Suchthat s;.1 € Post(s;)forall0 < < nwheren >0

e An infinite path fragment = of TS is an infinite state sequence:

T = 89S81S82... such that Si+1 € POS’[(SO for all 7 >0

e A path of TS is an initial, maximal path fragment

— a maximal path fragment is either finite ending in a terminal state, or infinite
— a path fragment is initial if sg € I
— Paths(s) is the set of maximal path fragments 7 with first(7) = s

© JPK 6

#5: Linear-time properties Model checking

Semaphore-based mutual exclusion

PGl . PGQ .

))

£ noncrit; } £ noncrits }

y=0 means “lock is currently possessed”; y=1 means “lock is free”

© JPK .

#5: Linear-time properties Model checking

Transition system TS(PG; ||| PG3)

© JPK 8

#5: Linear-time properties Model checking

Example paths

© JPK 9

#5: Linear-time properties Model checking

Traces

e Actions are mainly used to model the (possibility of) interaction

— synchronous or asynchronous communication

e Here, focus on the states that are visited during executions

— the states themselves are not “observable”, but just their atomic propositions

e Consider sequences of the form L(sg) L(s1) L(s2) ...

— just register the (set of) atomic propositions that are valid along the execution
]

— instead of execution sg —9% s > S5 .
= this is called a trace

e For a transition system without terminal states:

w
— traces are infinite words over the alphabet 2AP e, they are in (2AP>

© JPK 10

#5: Linear-time properties

Model checking

Traces

e Let transition system TS = (S,Act,—, I, AP, L) without terminal

states

— all maximal paths (and excutions) are infinite

e The trace of path fragment 7 = sgs1... Is trace(w) = L(sg) L(s1) - . .

— thetrace of T = sgs1...syistrace(w) = L(sg) L(s1) ... L(sy)

e The set of traces of a set II of paths: trace(Il) = { trace(r) | # € IT }

e Traces(s) = trace(Paths(s))

e Tracesy,(s) = trace(Pathsg,(s))

Traces(TS) = |J,; Traces(s)

Traces;,(TS) =

sel

Tracesg,(s)

© JPK

11

#5: Linear-time properties Model checking

Example traces
Let AP = { crity, crit, }

Example path:
T = (ny,ne,y=1) = (wi,n2,y=1) — (c1,n2,y = 0) —
(ni,n2,y =1) = (n,wa,y = 1) — (n1,c2,y =0) — ...

The trace of this path is the infinite word:
trace(w) = @ {crity } @@ {crity } @ {crity } @ {crita }...

The trace of the finite path fragment:

T = (ny,ne,y=1) = (wi,ne,y=1) = (w,wz,y = 1) —

(wi, c2,y = 0) — (w1,n2,y = 1) — (c1,n2,y = 0)

trace(m) = @@ {crity } & {crit; }

© JPK 12

#5: Linear-time properties Model checking

Linear-time properties

e Linear-time properties specify the traces that a TS must exhibit

— LT-property specifies the admissible behaviour of system under consideration

later, a logic will be introduced for specifying LT properties

o Alinear-time property (LT property) over AP is a subset of (24P)"

— finite words are not needed, as it is assumed that there are no terminal states
e TS (over AP) satisfies LT property P (over AP):

TS =P ifandonlyif Traces(TS) C P

— TS satisfies the LT property P if all its “observable” behaviors are admissible
— state s € S satisfies P, notation s |= P, whenever Traces(s) C P

© JPK 13

#5: Linear-time properties Model checking

How to specify mutual exclusion?

“Always at most one process is in its critical section”

e Let AP = { crity, crity }

— other atomic propositions are not of any relevance for this property

e Formalization as LT property
Pute: = setof infinite words Ag A; A, . .. with { crity, crity } € A, forall 0 < ¢

e Contained in P, are e.g., the infinite words:

— ({crity } {crity })* and {crit; } {crit; } {crit;}... andooo...
— but not { crity } @ { crity, crite } ... or @ { crity }, @ @ { crity, crit; }@ . ..

Does the semaphore-based algorithm satisfy P,z ?

© JPK 14

#5: Linear-time properties Model checking

Does the semaphore-based algorithm satisty P,,,ic.?

N

{ crity }{{c1,wa, y=0)

-

(w1, ca, y=OD{ crity

Yes as there is no reachable state labeled with { crit, crit; }

© JPK 15

#5: Linear-time properties Model checking

How to specify starvation freedom?

“A process that wants to enter the critical section is eventually able to do so
e Let AP = {waity, crity, waity, crit, }

e Formalization as LT-property

P, same = Set of infinite words Ag A; As . .. such that:
(030 J. wait; € Aj> = (030 j. crit; € Aj) foreachi: € {1,2}

there exist infinitely many: (Oéljj.waiti S Aj) = (Vk > 0.d5 > k.wait; € Aj)

Does the semaphore-based algorithm satisfy P, s4ve?

© JPK 16

#5: Linear-time properties Model checking

Does the semaphore-based algorithm satisfy P, surve?

%)

aity, wait

s, wm, v=1)

@1, na, y:@{ crit; }

N

{ crity, waitg }((c1, w2, y=0)

{ crity }in, c2, y:OD

.

(w1, c2, y:OD{ waity, crit }

No. Trace @ ({ wait, } { waity, waity } { crit;, waity }) € Traces(TS), but € Postarve

© JPK 17

#5: Linear-time properties

Model checking

Mutual exclusion algorithm revisited

this algorithm satisfies P,,,zc,

© JPK

18

#5: Linear-time properties Model checking

Refining mutual exclusion algorithm

ch, no, y:OD (n1, c2, ?JZOD

(wy, c2, yZOD

this variant algorithm with an omitted edge also satisfies P, ;¢

© JPK 19

#5: Linear-time properties

Model checking

Trace equivalence and LT properties

For TS and TS’ be transition systems (over AP) without terminal states:

Traces(TS) C Traces(TS')
if and only if

for any LT property P: TS" |= P implies TS = P

Traces(TS) = Traces(TS')
if and only if
TS and TS' satisfy the same LT properties

© JPK

20

#5: Linear-time properties Model checking

Two beverage vending machines

select,

AP = { pay, sprite, beer }

there is no LT-property that can distinguish between these machines

© JPK 21

#5: Linear-time properties Model checking

Invariants

e Safety properties =~ “nothing bad should happen” [Lamport 1977]

e Typical safety property: mutual exclusion property

— the bad thing (having > 1 process in the critical section) never occurs
e Another typical safety property is deadlock freedom

=- These properties are In fact invariants

e An invariant is an LT property

— that is given by a condition $ for the states
— and requires that ® holds for all reachable states
— e.g., for mutex property & = —crit; Vv —crity

© JPK 22

#5: Linear-time properties Model checking

Invariants

e An LT property P;,, over AP is an invariant if there is a propositional
logic formula ® over AP such that:

Py ={ AcA1A2...€ 2")" | Vi >0.A; D}
— & is called an invariant condition of P;,,

e Note that

1S = P, Iiff trace(w) € P, forall paths win TS
iff L(s) = ® for all states s that belong to a path of TS
iff L(s) = @ forall states s € Reach(TS)

e ® has to be fulfilled by all initial states and

— satisfaction of ® is invariant under all transitions in the reachable fragment of TS

© JPK 23

#5: Linear-time properties Model checking

Checking an invariant

e Checking an invariant for the propositional formula &

= check the validity of ® in every reachable state
= use a slight modification of standard graph traversal algorithms (DFS and BFS)
— provided the given transition system TS is finite

e Perform a forward depth-first search

— at least one state s is found with s = & = the invariance of ® is violated

e Alternative: backward search

— starts with all states where & does not hold
— calculates (by a DFS or BFS) the set | J, g .4 Pre™(s)

© JPK 24

#5: Linear-time properties Model checking

A naive invariant checking algorithm

Input: finite transition system TS and propositional formula &
Output: true if TS satisfies the invariant "always ®”, otherwise false

set of state R := &, (* the set of visited states *)
stack of state U := ¢; (* the empty stack *)
bool b := true; (* all states in R satisfy ® *)
forall s € I do

if s ¢ R then

visit(s) (* perform a dfs for each unvisited initial state *)

fi
od
return b

© JPK 25

#5: Linear-time properties Model checking

A naive invariant checking algorithm

procedure visit (state s)

push(s, U); (* push s on the stack *)
R:=R U {s}; (* mark s as reachable *)
repeat
s’ :=top(U);
if Post(s’) C R then
pop(U);
b:=b A (s | @) (* check validity of ® in s’ *)
else

let s” € Post(s’) \ R
push(s”, U);

R:=RU {s"}; (* state s’ is a new reachable state *)
fi
until (U = ¢)
endproc

error indication is state refuting $
initial path fragment sg s1 s2. .. s, with s; = ® (¢ # n) and s,, = ® is more useful

© JPK 26

#5: Linear-time properties Model checking

Invariant checking by DFS

Input: finite transition system TS and propositional formula
Output: "yes” if TS |= "always ", otherwise "no” plus a counterexample

set of states R := &; (* the set of reachable states *)
stack of states U := ¢; (* the empty stack *)
bool b := true; (* all states in R satisfy ® *)
while (I \ R # @ A b)do

lets € I\ R; (* choose an arbitrary initial state not in R *)

visit(s); (* perform a DFS for each unvisited initial state *)
od
if bthen

return(’yes”) (* TS |= "always " *)
else

return("no”, reverse(U)) (* counterexample arises from the stack content *)

fi

© JPK 27

#5: Linear-time properties

Model checking

Invariant checking by DFS

procedure visit (state s)
push(s, U);
R:=R U {s};
repeat
s 1= top(U);
if Post(s’) C R then
pop(U);
b:=b A (s = ®);
else
let s” € Post(s’) \ R
push(s”, U);
R:=RuU{s"};
fi
until (U =€) v —b)
endproc

(* push s on the stack *)
(* mark s as reachable *)

(* check validity of ® in s’ *)

(* state s’ is a new reachable state *)

© JPK

28

#5: Linear-time properties Model checking

Time complexity

e Under the assumption that
— s’ € Post(s) can be encountered in time ©(|Post(s)])
= this holds for a representation of Post(s) by adjacency lists
e The time complexity for invariant checking is O(N * (1 + |®|) + M)
— where N denotes the number of reachable states, and
- M =) g |Post(s)| the number of transitions in the reachable fragment of TS
e The adjacency lists are typically given implicitly

— e.g., by a syntactic description of the concurrent processes as program graphs
— Post(s) is obtained by the rules for the transition relation

© JPK 29

#5: Linear-time properties Model checking

Safety properties

e Safety properties may impose requirements on finite path fragments

— and cannot be verified by considering the reachable states only

e A safety property which is not an invariant:

— consider a cash dispenser, also known as automated teller machine (ATM)
— property “money can only be withdrawn once a correct PIN has been provided”
=- not an invariant, since it is not a state property

e But a safety property:

— any infinite run violating the property has a finite prefix that is “bad”
— i.e., in which money is withdrawn without issuing a PIN before

© JPK 30

#5: Linear-time properties Model checking

Safety properties

o LT property P;,. over AP is a safety property if

— forall o € (2AP> \ Pk there exists a finite prefix o of o such that:

Pipe N {a’ C (QAP) | o is a prefix of a’} =

J/

'
all possible extensions of &

— any such finite word & is called a bad prefix for Py

e Minimal bad prefix for Ps,:

— is a bad prefix & for Py, for which no proper prefix of & is a bad prefix for Py.
= minimal bad prefixes are bad prefixes of minimal length

© JPK 31

#5: Linear-time properties

Model checking

Example safety properties

© JPK

32

#5: Linear-time properties Model checking

Safety properties and finite traces

For transition system TS without terminal states

and safety property P!

TS = Psye ifand only if Tracess,(TS) N BadPref(Py,) = @

where BadPref(Py,) is the set of bad prefixes of Py,

© JPK

33

