© JPK

Fairness
Lecture #7 of Model Checking

Joost-Pieter Katoen
Lehrstuhl 2: Software Modeling and Verification

E-mail: kat oen@s. r wt h- aachen. de

April 24, 2007

#7: Fairness

Model checking

Overview Lecture #7

= The Importance of Fairness
e Fairness Constraints

e Fairness Assumptions

e Fair Concurrency

e Fairness and Safety Properties

© JPK

#7. Fairness Model checking

Does this program terminate?

Inc ||| Reset
where
procInc = while{(x>0doxz:=z+1)od
proc Reset = x:= -1

x 1S a shared integer variable that initially has value O

© JPK 2

#7. Fairness Model checking

Do we starve?

((n1, ca,y=0))

(wy, ¢3,y=0))

© JPK 3

#7. Fairness Model checking

Process two starves

((n1, ca,y=0))

(wy, ¢3,y=0))

process two finitely many times in critical section remains unfair

© JPK 4

#7. Fairness Model checking

Process one starves

<<Cl’ n9, y:O)> C(nla c2, Y= O>)

<<cl, wa, y=0) (w1, ca, y:O>>

© JPK 5

#7. Fairness Model checking

Fairness

e Starvation freedom is often considered under process fairness

= there is a fair scheduling of the execution of processes

e Fairness is typically needed to prove liveness

— not for safety properties!
— to prove some form of progress, progress needs to be possible

e Fairness is concerned with a fair resolution of nondeterminism

— such that it is not biased to consistently ignore a possible option

e Problem: liveness properties constrain infinite behaviours

— but some traces—that are unfair—refute the liveness property

© JPK 6

#7. Fairness Model checking

Fairness constraints

e What is wrong with our examples? Nothing!

— interleaving: not realistic as in no processor is infinitely faster than another
— semaphore-based mutual exclusion: level of abstraction

e Rule out “unrealistic” runs by imposing fairness constraints

— what to rule out? = different kinds of fairness constraints

e “A process gets its turn infinitely often”

— always unconditional fairness
— if it is enabled infinitely often strong fairness
— ifitis continuously enabled from some point on weak fairness

© JPK .

#7. Fairness Model checking

Fairness

This program terminates under unconditional fairness:

proc Inc

while (z > 0do xz:=x+1) od

proc Reset = z:=-1

x IS a shared integer variable that initially has value O

© JPK 8

#7: Fairness

Model checking

Overview Lecture #7

e The Importance of Fairness
= Fairness Constraints

e Fairness Assumptions

e Fair Concurrency

e Fairness and Safety Properties

© JPK

#7. Fairness Model checking

Fairness constraints

e Unconditional fairness

an activity is executed infinitely often

e Strong fairness

if an activity is infinitely often enabled (not necessarily always!)
then it has to be executed infinitely often

e Weak fairness

if an activity is continuously enabled (no temporary disabling!)
then it has to be executed infinitely often

we will use actions to distinguish fair and unfair behaviours

© JPK 10

#7. Fairness Model checking

Fairness definition
For TS = (S, Act, —, I, AP, L) without terminal states, A C Act,

1

and infinite execution fragment p = sg —% s ..Oof TS:

1. pis unconditionally A-fair whenever: true —- VkE>0.3j>k.a; € A

infinitely often A is taken
2. pis strongly A-fair whenever:

(Vk >0.35 > kACt(sj)ﬂA;é@) — (VE2>20.3j>k.a; € A)

infinitely often A is enabled infinitely often A is taken

3. pisweakly A-fair whenever:

(3k>0.Vj > kACt(sj)ﬂA;é@) — (VE2>20.3j>k.a; € A)

Als eventually always enabled infinitely often A is taken

where Act(s) = {a cAct]|3Is' €8 5% }

© JPK 11

#7. Fairness Model checking

Example (un)fair executions

((n1, ca,y=0))

(wy, ¢3,y=0))

© JPK 12

#7. Fairness Model checking

Which fairness notion to use?

e Fairness constraints aim to rule out “unreasonable” runs

e ToO strong? = relevant computations ruled out

verification yields:
— “false”: error found
— “true”; don’t know as some relevant execution may refute it

e TOoO weak? = too many computations considered

verification yields:
— “true”: property holds
— “false”: don’t know, as refutation maybe due to some unreasonable run

© JPK 13

#7. Fairness Model checking

Relation between fairness constraints

unconditional A-fairness — strong A-fairness — weak A-fairness

© JPK 14

#7: Fairness

Model checking

Overview Lecture #7

e The Importance of Fairness
e Fairness Constraints

= Fairness Assumptions
e Fair Concurrency

e Fairness and Safety Properties

© JPK

15

#7. Fairness Model checking

Fairness assumptions

e Fairness constraints impose a requirementon any a € A
e In practice: different constraints on different action sets needed

e This is realised by fairness assumptions

© JPK 16

#7. Fairness Model checking

Fairness assumptions

e A fairness assumption for Act is a triple

F = (fucondafstmnwfweak)

: Act
with Fuconda fstmnga Fweak € 27,

e Execution p is F-fair if:

— it is unconditionally A-fair for all A € F.on4, and
— itis strongly A-fair for all A € Fng, and
— itis weakly A-fair forall A € Fear

fairness assumption (@, F’', &) denotes strong fairness; (o, @, F') weak, etc.

© JPK 17

#7: Fairness

Model checking

Fairness for mutual exclusion

wi, €2, y:@

F = (g, {{ entery, enter, }},)

NV
F strong

© JPK

18

#7: Fairness

Model checking

Fairness for mutual exclusion

wi, €2, y:@

F = (@, {{ enter; }, { enter, }}, o)

\

NV
F strong

© JPK

19

#7: Fairness

Model checking

Fairness for mutual exclusion

@nla €2, yZOD

w1,C2,y=0)
F = (@, {{ enter; }, { enter, }}, {{ req; }, { req, }}>
fs??ong }—;)reak

in any F’-fair execution each process infinitely often requests access

© JPK

20

#7. Fairness Model checking

Fair paths and traces

e Path sg — sy — so...1s F-fair if

— there exists an F-fair execution sg — s; —2+ s, . . .
— FairPaths = (s) denotes the set of F-fair paths that start in s
— FairPaths(TS) = |J,.; FairPathsx(s)
e Trace o is F-fair if there exists an F-fair execution p with trace(p) = o

— FairTracesz(s) = trace(FairPathsz(s))
— FairTracesz(TS) = trace(FairPaths =(TS))

these notions are only defined for infinite paths and traces; why?

© JPK 21

#7. Fairness Model checking

Fair satisfaction

e TS satisfies LT-property P:
TS =P ifandonlyif Traces(TS) C P
— TS satisfies the LT property P if all its observable behaviors are admissible
e TS fairly satisfies LT-property P wrt. fairness assumption F:
TS =+ P ifandonlyif FairTracesx(TS) C P

— if all paths in TS are F-fair, then TS =+ P ifand only if TS = P
— if some path in TS is not F-fair, then possibly TS =7 P but TS |~ P

© JPK 22

#7: Fairness

Model checking

Fairness for mutual exclusion

@11, 2, y:OD

wy, c2, y=0)

TS [~ “every process enters its critical section infinitely often”

and TS [~ “every ... often”

but TS =, “every ... often”

© JPK

23

#7. Fairness Model checking

Overview Lecture #7

e The Importance of Fairness
e Fairness Constraints
e Fairness Assumptions

= Fair Concurrency

e Fairness and Safety Properties

© JPK 24

#7. Fairness Model checking

Fair concurrency with synchronization
TS, = (5;,Act;, —;, I;, AP;, L;), for 1 < i < n, has no terminal states
TS =TS || TSy | ... || TS,
TS; and TS, (i#7) synchronize on their common actions:
Syn, ; = Act; N Act;

Syn; ; N Act, = g forany k # i, j

For simplicity, it is assumed that TS has no terminal states

how to establish a fair communication mechanism?

© JPK 25

#7: Fairness

Model checking

Asynchronous concurrent systems

concurrency

Interleaving (i.e., nondeterminism) + fairness

© JPK

26

#7. Fairness Model checking

Some fairness assumptions

e Strong fairness constraint: {Actl,Actg, . ,Actn}

— TS, executes an action (not necessarily a sync!) infinitely often
provided TS is infinitely often in a (global) state with a transition of TS, enabled

e Strong fairness constraint: { {a} | a € Syn, ;,0<i<j<n}

— every individual synchronization is forced to happen infinitely often

e Strong fairness constraint: {Syn, . | 0<i<j<n}

— every pair of processes is forced to synchronize infinitely often

e Strong fairness constraint: { Uy, <, Syn; ; }

— a synchronization (possibly the same) takes place infinitely often

© JPK 27

#7: Fairness

Model checking

Overview Lecture #7

e The Importance of Fairness
e Fairness Constraints

e Fairness Assumptions

e Fair Concurrency

= Fairness and Safety Properties

© JPK

28

#7. Fairness Model checking

Realizable fairness

For TS with set of actions Act and fairness assumption F for Act:

F is realizable for TS if for any s € Reach(TS): FairPaths(s) # @

every initial finite execution fragment of TS can be completed to a fair execution

© JPK 29

#7: Fairness

Model checking

/
S0

The suffix property

B1

/ /
—>Slﬁ>"'ﬂ>8n
57

arbitrary sta?tring fragment

a1 %) a3
—S0— > 81 — > S2—

fair continuation

© JPK

30

#7: Fairness

Model checking

Realizable fairness and safety

For TS and safety property P, (both over AP)
and F a realizable fairness assumption for TS:
TS = Py ifandonlyif TS E=r P

© JPK

31

#7. Fairness Model checking

Summary of fairness

e Fairness constraints rule out unrealistic traces

— i.e., constraints on the actions that occur along infinite executions
— important for the verification of liveness properties

e Unconditional, strong, and weak fairness constraints

— unconditional =- strong fair = weak fair
e Fairness assumptions allow distinct constraints on distinct action sets

e (Realizable) fairness assumptions are irrelevant for safety properties

© JPK 32

