
Fairness
Lecture #7 of Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling and Verification

E-mail: katoen@cs.rwth-aachen.de

April 24, 2007

c© JPK

#7: Fairness Model checking

Overview Lecture #7

⇒ The Importance of Fairness

• Fairness Constraints

• Fairness Assumptions

• Fair Concurrency

• Fairness and Safety Properties

c© JPK 1

#7: Fairness Model checking

Does this program terminate?

Inc |||Reset

where

proc Inc = while 〈x � 0 do x := x + 1 〉 od

proc Reset = x := −1

x is a shared integer variable that initially has value 0

c© JPK 2

#7: Fairness Model checking

Do we starve?

〈n1, n2, y=1〉

〈w1, n2, y=1〉 〈n1, w2, y=1〉

〈c1, n2, y=0〉 〈w1, w2, y=1〉 〈n1, c2, y=0〉

〈c1, w2, y=0〉 〈w1, c2, y=0〉

req1

req2

enter1

req2

req1

enter2

req2

enter1

enter2

req1

rel
rel

rel
rel

c© JPK 3

#7: Fairness Model checking

Process two starves

〈n1, n2, y=1〉

〈w1, n2, y=1〉 〈n1, w2, y=1〉

〈c1, n2, y=0〉 〈w1, w2, y=1〉 〈n1, c2, y=0〉

〈c1, w2, y=0〉 〈w1, c2, y=0〉

req1

req2

enter1

req2

req1

enter2

req2

enter1

enter2

req1

rel
rel

rel
rel

process two finitely many times in critical section remains unfair

c© JPK 4

#7: Fairness Model checking

Process one starves

〈n1, n2, y=1〉

〈w1, n2, y=1〉 〈n1, w2, y=1〉

〈c1, n2, y=0〉 〈w1, w2, y=1〉 〈n1, c2, y=0〉

〈c1, w2, y=0〉 〈w1, c2, y=0〉

req1

req2

enter1

req2

req1

enter2

req2

enter1

enter2

req1

rel
rel

rel
rel

c© JPK 5

#7: Fairness Model checking

Fairness

• Starvation freedom is often considered under process fairness

⇒ there is a fair scheduling of the execution of processes

• Fairness is typically needed to prove liveness

– not for safety properties!
– to prove some form of progress, progress needs to be possible

• Fairness is concerned with a fair resolution of nondeterminism

– such that it is not biased to consistently ignore a possible option

• Problem: liveness properties constrain infinite behaviours

– but some traces—that are unfair—refute the liveness property

c© JPK 6

#7: Fairness Model checking

Fairness constraints

• What is wrong with our examples? Nothing!

– interleaving: not realistic as in no processor is infinitely faster than another
– semaphore-based mutual exclusion: level of abstraction

• Rule out “unrealistic” runs by imposing fairness constraints

– what to rule out? ⇒ different kinds of fairness constraints

• “A process gets its turn infinitely often”

– always unconditional fairness
– if it is enabled infinitely often strong fairness
– if it is continuously enabled from some point on weak fairness

c© JPK 7

#7: Fairness Model checking

Fairness

This program terminates under unconditional fairness:

proc Inc = while 〈x � 0 do x := x + 1 〉 od

proc Reset = x := −1

x is a shared integer variable that initially has value 0

c© JPK 8

#7: Fairness Model checking

Overview Lecture #7

• The Importance of Fairness

⇒ Fairness Constraints

• Fairness Assumptions

• Fair Concurrency

• Fairness and Safety Properties

c© JPK 9

#7: Fairness Model checking

Fairness constraints

• Unconditional fairness

an activity is executed infinitely often

• Strong fairness

if an activity is infinitely often enabled (not necessarily always!)
then it has to be executed infinitely often

• Weak fairness

if an activity is continuously enabled (no temporary disabling!)
then it has to be executed infinitely often

we will use actions to distinguish fair and unfair behaviours

c© JPK 10

#7: Fairness Model checking

Fairness definition
For TS = (S, Act,→, I, AP, L) without terminal states, A ⊆ Act,

and infinite execution fragment ρ = s0
α0−−→ s1

α1−−→ . . . of TS:

1. ρ is unconditionally A-fair whenever: true =⇒ ∀k � 0. ∃j � k. αj ∈ A| {z }
infinitely often A is taken

2. ρ is strongly A-fair whenever:

(∀k � 0. ∃j � k. Act(sj) ∩ A
= ∅)| {z }
infinitely often A is enabled

=⇒ (∀k � 0. ∃j � k. αj ∈ A)| {z }
infinitely often A is taken

3. ρ is weakly A-fair whenever:

(∃k � 0. ∀j � k. Act(sj) ∩ A
= ∅)| {z }
A is eventually always enabled

=⇒ (∀k � 0. ∃j � k. αj ∈ A)| {z }
infinitely often A is taken

where Act(s) =
n

α ∈ Act | ∃s′ ∈ S. s α−−→ s′
o

c© JPK 11

#7: Fairness Model checking

Example (un)fair executions

〈n1, n2, y=1〉

〈w1, n2, y=1〉 〈n1, w2, y=1〉

〈c1, n2, y=0〉 〈w1, w2, y=1〉 〈n1, c2, y=0〉

〈c1, w2, y=0〉 〈w1, c2, y=0〉

req1

req2

enter1

req2

req1

enter2

req2

enter1

enter2

req1

rel
rel

rel
rel

c© JPK 12

#7: Fairness Model checking

Which fairness notion to use?

• Fairness constraints aim to rule out “unreasonable” runs

• Too strong? ⇒ relevant computations ruled out

verification yields:
– “false”: error found
– “true”: don’t know as some relevant execution may refute it

• Too weak? ⇒ too many computations considered

verification yields:
– “true”: property holds
– “false”: don’t know, as refutation maybe due to some unreasonable run

c© JPK 13

#7: Fairness Model checking

Relation between fairness constraints

unconditional A-fairness =⇒ strong A-fairness =⇒ weak A-fairness

c© JPK 14

#7: Fairness Model checking

Overview Lecture #7

• The Importance of Fairness

• Fairness Constraints

⇒ Fairness Assumptions

• Fair Concurrency

• Fairness and Safety Properties

c© JPK 15

#7: Fairness Model checking

Fairness assumptions

• Fairness constraints impose a requirement on any α ∈ A

• In practice: different constraints on different action sets needed

• This is realised by fairness assumptions

c© JPK 16

#7: Fairness Model checking

Fairness assumptions

• A fairness assumption for Act is a triple

F = (Fucond ,Fstrong ,Fweak)

with Fucond ,Fstrong ,Fweak ∈ 2Act.

• Execution ρ is F -fair if:

– it is unconditionally A-fair for all A ∈ Fucond , and
– it is strongly A-fair for all A ∈ Fstrong , and
– it is weakly A-fair for all A ∈ Fweak

fairness assumption (∅,F′, ∅) denotes strong fairness; (∅, ∅,F′) weak, etc.

c© JPK 17

#7: Fairness Model checking

Fairness for mutual exclusion

〈n1, n2, y=1〉

〈w1, n2, y=1〉 〈n1, w2, y=1〉

〈c1, n2, y=0〉 〈w1, w2, y=1〉 〈n1, c2, y=0〉

〈c1, w2, y=0〉 〈w1, c2, y=0〉

req1

req2

enter1

req2

req1

enter2

req2

enter1

enter2

req1

rel
rel

rel
rel

F = (∅,
n
{ enter1, enter2 }

o
| {z }

Fstrong

, ∅)

c© JPK 18

#7: Fairness Model checking

Fairness for mutual exclusion

〈n1, n2, y=1〉

〈w1, n2, y=1〉 〈n1, w2, y=1〉

〈c1, n2, y=0〉 〈w1, w2, y=1〉 〈n1, c2, y=0〉

〈c1, w2, y=0〉 〈w1, c2, y=0〉

req1

req2

enter1

req2

req1

enter2

req2

enter1

enter2

req1

rel
rel

rel
rel

F = (∅,
n
{ enter1 }, { enter2 }

o
| {z }

Fstrong

, ∅)

c© JPK 19

#7: Fairness Model checking

Fairness for mutual exclusion

〈n1, n2, y=1〉

〈w1, n2, y=1〉 〈n1, w2, y=1〉

〈c1, n2, y=0〉 〈w1, w2, y=1〉 〈n1, c2, y=0〉

〈c1, w2, y=0〉 〈w1, c2, y=0〉

req1

req2

enter1

req2

req1

enter2

req2

enter1

enter2

req1

rel
rel

rel
rel

F′ =

„
∅,

n
{ enter1 }, { enter2 }

o
| {z }

Fstrong

,
n
{ req1 }, { req2 }

o
| {z }

Fweak

«

in any F′-fair execution each process infinitely often requests access

c© JPK 20

#7: Fairness Model checking

Fair paths and traces

• Path s0−→ s1−→ s2 . . . is F-fair if

– there exists an F -fair execution s0
α1−−→ s1

α2−−→ s2 . . .

– FairPathsF(s) denotes the set of F -fair paths that start in s

– FairPathsF(TS) =
S

s∈I FairPathsF(s)

• Trace σ is F-fair if there exists an F-fair execution ρ with trace(ρ) = σ

– FairTracesF(s) = trace(FairPathsF(s))

– FairTracesF(TS) = trace(FairPathsF(TS))

these notions are only defined for infinite paths and traces; why?

c© JPK 21

#7: Fairness Model checking

Fair satisfaction

• TS satisfies LT-property P :

TS |= P if and only if Traces(TS) ⊆ P

– TS satisfies the LT property P if all its observable behaviors are admissible

• TS fairly satisfies LT-property P wrt. fairness assumption F :

TS |=F P if and only if FairTracesF(TS) ⊆ P

– if all paths in TS are F -fair, then TS |=F P if and only if TS |= P

– if some path in TS is not F -fair, then possibly TS |=F P but TS
|= P

c© JPK 22

#7: Fairness Model checking

Fairness for mutual exclusion

〈n1, n2, y=1〉

〈w1, n2, y=1〉 〈n1, w2, y=1〉

〈c1, n2, y=0〉 〈w1, w2, y=1〉 〈n1, c2, y=0〉

〈c1, w2, y=0〉 〈w1, c2, y=0〉

req1

req2

enter1

req2

req1

enter2

req2

enter1

enter2

req1

rel
rel

rel
rel

TS
|= “every process enters its critical section infinitely often”

and TS
|=F “every . . . often”

but TS |=F′ “every . . . often”

c© JPK 23

#7: Fairness Model checking

Overview Lecture #7

• The Importance of Fairness

• Fairness Constraints

• Fairness Assumptions

⇒ Fair Concurrency

• Fairness and Safety Properties

c© JPK 24

#7: Fairness Model checking

Fair concurrency with synchronization

TSi = (Si, Acti,→i, Ii, APi, Li), for 1 � i � n, has no terminal states

TS = TS1 ‖ TS2 ‖ . . . ‖ TSn

TSi and TSj (i	=j) synchronize on their common actions:

Syni,j = Acti ∩ Actj

Syni,j ∩ Actk = ∅ for any k 	= i, j

For simplicity, it is assumed that TS has no terminal states

how to establish a fair communication mechanism?

c© JPK 25

#7: Fairness Model checking

Asynchronous concurrent systems

concurrency = interleaving (i.e., nondeterminism) + fairness

c© JPK 26

#7: Fairness Model checking

Some fairness assumptions

• Strong fairness constraint:
{

Act1, Act2, . . . , Actn
}

– TSi executes an action (not necessarily a sync!) infinitely often
provided TS is infinitely often in a (global) state with a transition of TSi enabled

• Strong fairness constraint:
{ {α } | α ∈ Syni,j, 0 < i < j � n

}

– every individual synchronization is forced to happen infinitely often

• Strong fairness constraint:
{

Syni,j | 0 < i < j � n
}

– every pair of processes is forced to synchronize infinitely often

• Strong fairness constraint:
{⋃

0<i<j�n Syni,j

}

– a synchronization (possibly the same) takes place infinitely often

c© JPK 27

#7: Fairness Model checking

Overview Lecture #7

• The Importance of Fairness

• Fairness Constraints

• Fairness Assumptions

• Fair Concurrency

⇒ Fairness and Safety Properties

c© JPK 28

#7: Fairness Model checking

Realizable fairness

For TS with set of actions Act and fairness assumption F for Act:

F is realizable for TS if for any s ∈ Reach(TS): FairPathsF(s) 	= ∅

every initial finite execution fragment of TS can be completed to a fair execution

c© JPK 29

#7: Fairness Model checking

The suffix property

s′0
β1−−→ s′1

β2−−→ . . .
βn−−→ s′n︸ ︷︷ ︸

arbitrary starting fragment

= s0
α1−−→ s1

α2−−→ s2
α3−−→ . . .︸ ︷︷ ︸

fair continuation

c© JPK 30

#7: Fairness Model checking

Realizable fairness and safety

For TS and safety property Psafe (both over AP)

and F a realizable fairness assumption for TS:

TS |= Psafe if and only if TS |=F Psafe

c© JPK 31

#7: Fairness Model checking

Summary of fairness

• Fairness constraints rule out unrealistic traces

– i.e., constraints on the actions that occur along infinite executions
– important for the verification of liveness properties

• Unconditional, strong, and weak fairness constraints

– unconditional ⇒ strong fair ⇒ weak fair

• Fairness assumptions allow distinct constraints on distinct action sets

• (Realizable) fairness assumptions are irrelevant for safety properties

c© JPK 32

