Model Checking Regular Safety Properties
Lecture #8 of Model Checking

Joost-Pieter Katoen
Lehrstuhl 2: Software Modeling & Verification

E-mail: kat oen@s. r wt h- aachen. de

April 25, 2007

© JPK

#8: Verifying Regular Safety Properties Model checking

Overview Lecture #8

= Regular Safety Properties

e Finite Automata in a Nutshell

e Verifying Reqgular Safety Properties

— Reduction to Invariant Checking
— Proof of Correctness
— The Algorithm

© JPK 1

#8: Verifying Regular Safety Properties Model checking

Safety properties

e LT property P, over AP is a safety property if

— forall o € (QAP)w \ Pk there exists a finite prefix o of o such that:
Py N {a’ = (2Ap>w | & is a prefix of a’} — U
e The set of bad prefixes for Ps,:
BadPref(Py.) = {5 € (2°°)" |Vo € (2°°)".G 0 & Py }
— P, is aregular safety property if BadPref(P,y) is regular

Given regular safety property Ps,z, how to check TS |= Pyp.?

© JPK 2

#8: Verifying Regular Safety Properties Model checking

Example regular safety properties

© JPK 3

#8: Verifying Regular Safety Properties Model checking

Overview Lecture #8

e Regular Safety Properties

= Finite Automata in a Nutshell

e Verifying Reqgular Safety Properties

— Reduction to Invariant Checking
— Proof of Correctness
— The Algorithm

© JPK 4

#8: Verifying Regular Safety Properties Model checking

Finite automata

A nondeterministic finite automaton (NFA) A is a tuple (Q, X, 3, Qo, F') where:

e () Is a finite set of states

e X IS an alphabet A A
: . : B
e §:(Q x X — 29 s a transition function o - ‘“
B

e (Jy C @ a set of initial states

e ' C ()lIs asetof accept (or: final) states

© JPK 5

#8: Verifying Regular Safety Properties Model checking

Size of an NFA

The size of A, denoted |.A|, is the number of states and transitions in A:

Al = 1QI+) > 14aA)]

qgeQ AcX

© JPK 6

#8: Verifying Regular Safety Properties Model checking

Language of an automaton
e NFA A= (Q,3,),Qy, F)andwordw =A;...A, € ¥*

e Arun forwin A is a finite sequence ¢y q; ... g, such that:

— qo € Qo and qifiqi+1forall0 <1 <n
e Rungpq; ... g, 1S accepting if ¢, € F
e W € X" is accepted by A if there exists an accepting run for w
e The accepted language of A:

L(A) = {w € X* | there exists an accepting run for win A }

e NFA A and A’ are equivalent if £(A) = L(A)

© JPK .

#8: Verifying Regular Safety Properties Model checking

Example runs and accepted words

© JPK 8

#8: Verifying Regular Safety Properties Model checking

Accepted language revisited
Extend the transition function J to * : Q x X* — 2¢ by:
0*(¢,e) ={q} and 0%(¢,A) =d(q,A)
5% (g, ArAz . An) = Upesioap 07 (0 A2 . Ay)

5" (q,w) = set of states reachable from ¢ for the word w

Then: L(A) = {W € X" | 6*(qo,W) N F # @ for some ¢y € Qo}

The class of languages accepted by NFA (over X2)

= the class of regular languages (over X2)

© JPK 9

#8: Verifying Regular Safety Properties

Model checking

Intersection
o Let NFA A; = (Qi, 2,65, Qo.4, F;), with i=1,2
e The product automaton
A1®As = (Q1 X Q2,%,0,Q0.1 X Qo.2, F1 X F»)

where ¢ is defined by:

A A
G114 N 22 gy

(Qb QQ) Ral (q/lv qé)

e Well-known result: L(A1®A42) = L(A1)NL(As2)

© JPK

10

#8: Verifying Regular Safety Properties Model checking

Total NFA

Automaton A is called deterministic If

Qo] <1 and [6(q,A)| <1 forallge QandAcY

DFA A is called total if

Qol =1 and |0(¢q,A)]=1 forallge QandA e X

any DFA can be turned into an equivalent total DFA

total DFA provide unigue successor states, and thus, unique runs for each input word

© JPK 11

#8: Verifying Regular Safety Properties Model checking

Determinization

For NFA A = (Q, >, 5, Q(), F) let Aget = (QQ, >, 5det7 Q07 Fdet) with:
Fia ={Q'CQ|Q N F #a}

and the total transition function 6, : 29 x ¥ — 2% is defined by:

baet(QA) = | (¢, A)

At is atotal DFA and, forallw € ¥7: 6, (Qo, W) = quEQo 5" (qo, W)
Thus: L(Ay) = L(A)

© JPK 12

#8: Verifying Regular Safety Properties Model checking

Determinization

A
()

{ {qo} > B /{qO,ql}>
A i B

<{ q0, 42 }) A @CIO7C]17C]2D>B

a deterministic finite automaton accepting L((A + B)"B(A + B))

© JPK 13

#8: Verifying Regular Safety Properties Model checking

Facts about finite automata
e They are as expressive as regular languages

e They are closed under N and complementation

— NFA A ® B (= cross product) accepts L(A) N L(B)
— Total DFA A (= swap all accept and normal states) accepts L(A) = X"\ L(A)

e They are closed under determinization (= removal of choice)

— although at an exponential cost.....

e L(A) = 27? = check for reachable accept state in A

— this can be done using a simple depth-first search

e For regular language L there is a unique minimal DFA accepting £

© JPK 14

#8: Verifying Regular Safety Properties Model checking

Overview Lecture #8

e Regular Safety Properties

e Finite Automata in a Nutshell

= Verifying Regular Safety Properties

— Reduction to Invariant Checking
— Proof of Correctness
— The Algorithm

© JPK 15

#8: Verifying Regular Safety Properties

Model checking

Peterson’s banking system

Person Left behaves as follows:

while true {
rq : b1, x = true, 2;
wait until(z == 1|| = b2) {
cs : ... @accounty, . ..}
b1 = false;
}

Person Right behaves as follows:

while true {
rq : ba, x = true, 1;
wait until(x == 2 || = by1) {
cs : ... @accountg ...}
by = false;

© JPK

16

#8: Verifying Regular Safety Properties Model checking

Is the banking system safe?

a:zzl\l/
by =0

e

Can we guarantee that only one person at a time has access to the bank account?

“always — (@account;, A @accounty)”

© JPK 17

#8: Verifying Regular Safety Properties Model checking

Is the banking system safe?
e Safe = at most one person may have access to the account

e Unsafe: two have access to the account simultaneously

— unsafe behaviour can be characterized by bad prefix
— alternatively (in this case) by the finite automaton:

= (Qaccounty,
A Qaccountp)

Qaccounty, \ Qaccountg .

e | Checking safety: Traces(System) N BadPref(P,) = 97

— intersection, complementation and emptiness of languages . . .

© JPK 18

#8: Verifying Regular Safety Properties

Model checking

Regular safety properties

Safety property P, over AP is regular

if its set of bad prefixes is a regular language over 24P

every invariant is regular

© JPK

19

#8: Verifying Regular Safety Properties Model checking

Problem statement

Let
o P, be aregular safety property over AP

e A an NFA recognizing the bad prefixes of P

— assumethate ¢ L(A)
= otherwise all finite words over 2°F are bad prefixes

e TS a finite transition system (over AP) without terminal states

How to establish whether TS = P;,.?

© JPK

20

#8: Verifying Regular Safety Properties Model checking

Basic idea of the algorithm

TS = P,y ifandonlyif Tracesg,(TS) N BadPref(Ps..) = @
if and only if Tracesg,(TS) N L(A) =2

ifand only if TS® A = “always” ® to be proven

But...... this amounts to invariant checkingon TS ® A

= checking regular safety properties can be done by depth-first search!

© JPK

21

#8: Verifying Regular Safety Properties Model checking

Synchronous product (revisited)

For transition system TS = (.S, Act, —, I, AP, L) without terminal states
and A = (Q,%,d,Qo, F) an NFA with ¥ = 22" and Qo N F' = &, let:

TS®A = (S, Act, ', I' AP L) where

e S'=9xQ,AP" =Qand L'({s,q)) = {q}

e —'Is the smallest relation defined by:

o«)/

(s,q) —" (&, p)
o I'={(s0,q) | soel A HQOEQO-QOMQ}

without loss of generality it may be assumed that TS ® A has no terminal states

© JPK 22

#8: Verifying Regular Safety Properties Model checking

Example product

—red A —yellow

yellow A —red

qr

d/yell Il
red/yellow | ye ow ~ellow

green

—{(green, qo)}-——(redlyellow, qq)|

[(yellow, ql)} { (red, qo) }

© JPK 23

#8: Verifying Regular Safety Properties Model checking

Verification of regular safety properties

Let TS over AP and NFA A with alphabet 22" as before, regular safety
property Py, over AP such that £(.A) is the set of bad prefixes of Ps,/..

The following statements are equivalent:
(@) TS = Py
(b) Traces;,(TS) N L(A) = @
() TS®A F Piwa

where Pj,,a) = /\qu —q

© JPK 24

#8: Verifying Regular Safety Properties

Model checking

Counterexamples

For each initial path fragment (sg, q1) . . . (Sn, gn+1) OF TS ® A:

Q,---,qn € Fandg,1 € F = trace(spsi...sn) € L(A)
bad pref&rfor Pote

© JPK

25

#8: Verifying Regular Safety Properties Model checking

Verification algorithm

Input: finite transition system TS and regular safety property P,
Output: true if TS = P,,. Otherwise false plus a counterexample for Piy..

Let NFA A (with accept states F’) be such that £(.A) = BadPref(Ps.);
Construct the product transition system TS ® A;
Check the invariant P;,,4) with proposition —F" = /\qu —qonTS® A

fTS® A |= Pz’nv(.A) then
return true

else
Determine initial path fragment (sq, q1) . . . (Sn, gn+1) OF TS ® A with ¢,,.1 € F
return (false, sgp s1...sn)

fi

© JPK 26

#8: Verifying Regular Safety Properties

Model checking

Example

© JPK

27

#8: Verifying Regular Safety Properties

Model checking

Time complexity

The time and space complexity of checking a regular safety property P,
against transition system TS is in:
O(|TS| - |A])

where A is an NFA recognizing the bad prefixes of Py

© JPK

28

#8: Verifying Regular Safety Properties Model checking

Can time complexity be improved?

The safety property P, is regular
if and only if

the set of minimal bad prefixes for P, is regular

BadPref(Py,) is regular if and only if MinBadPref(P,y) is regular

= use automaton for minimal bad prefixes in product construction

© JPK 29

