
Model Checking Regular Safety Properties
Lecture #8 of Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

April 25, 2007

c© JPK

#8: Verifying Regular Safety Properties Model checking

Overview Lecture #8

⇒ Regular Safety Properties

• Finite Automata in a Nutshell

• Verifying Regular Safety Properties

– Reduction to Invariant Checking
– Proof of Correctness
– The Algorithm

c© JPK 1

#8: Verifying Regular Safety Properties Model checking

Safety properties

• LT property Psafe over AP is a safety property if

– for all σ ∈
“
2AP

”ω

\ Psafe there exists a finite prefix bσ of σ such that:

Psafe ∩
n

σ
′ ∈

“
2

AP
”ω

| bσ is a prefix of σ′
o

= ∅

• The set of bad prefixes for Psafe:

BadPref(Psafe) = { σ̂ ∈ (
2AP)∗ | ∀σ ∈ (

2AP)ω
. σ̂ σ �∈ Psafe }

– Psafe is a regular safety property if BadPref(Psafe) is regular

Given regular safety property Psafe, how to check TS |= Psafe?

c© JPK 2

#8: Verifying Regular Safety Properties Model checking

Example regular safety properties

c© JPK 3

#8: Verifying Regular Safety Properties Model checking

Overview Lecture #8

• Regular Safety Properties

⇒ Finite Automata in a Nutshell

• Verifying Regular Safety Properties

– Reduction to Invariant Checking
– Proof of Correctness
– The Algorithm

c© JPK 4

#8: Verifying Regular Safety Properties Model checking

Finite automata

A nondeterministic finite automaton (NFA) A is a tuple (Q, Σ, δ, Q0, F) where:

• Q is a finite set of states

• Σ is an alphabet

• δ : Q × Σ → 2Q is a transition function

• Q0 ⊆ Q a set of initial states

• F ⊆ Q is a set of accept (or: final) states

q0 q1 q2

A

B

B

A

B

c© JPK 5

#8: Verifying Regular Safety Properties Model checking

Size of an NFA

The size of A, denoted |A|, is the number of states and transitions in A:

|A| = |Q| +
∑
q∈Q

∑
A∈Σ

| δ(q, A) |

c© JPK 6

#8: Verifying Regular Safety Properties Model checking

Language of an automaton
• NFA A = (Q, Σ, δ,Q0, F) and word w = A1 . . . An ∈ Σ∗

• A run for w in A is a finite sequence q0 q1 . . . qn such that:

– q0 ∈ Q0 and qi
Ai+1−−−−→ qi+1 for all 0 � i < n

• Run q0 q1 . . . qn is accepting if qn ∈ F

• w ∈ Σ∗ is accepted by A if there exists an accepting run for w

• The accepted language of A:

L(A) =
{

w ∈ Σ∗ | there exists an accepting run for w in A }

• NFA A and A′ are equivalent if L(A) = L(A′)

c© JPK 7

#8: Verifying Regular Safety Properties Model checking

Example runs and accepted words

c© JPK 8

#8: Verifying Regular Safety Properties Model checking

Accepted language revisited

Extend the transition function δ to δ∗ : Q × Σ∗ → 2Q by:

δ∗(q, ε) = { q } and δ∗(q, A) = δ(q, A)

δ∗(q, A1A2 . . . An) =
⋃

p∈δ(q,A1)
δ∗(p, A2 . . . An)

δ∗(q, w) = set of states reachable from q for the word w

Then: L(A) =
{

w ∈ Σ∗ | δ∗(q0, w) ∩ F �= ∅ for some q0 ∈ Q0

}

The class of languages accepted by NFA (over Σ)

= the class of regular languages (over Σ)

c© JPK 9

#8: Verifying Regular Safety Properties Model checking

Intersection

• Let NFA Ai = (Qi, Σ, δi, Q0,i, Fi), with i=1, 2

• The product automaton

A1⊗A2 = (Q1 × Q2,Σ, δ,Q0,1 × Q0,2, F1 × F2)

where δ is defined by:

q1
A−→1 q′1 ∧ q2

A−→2 q′2
(q1, q2)

A−→ (q′1, q
′
2)

• Well-known result: L(A1⊗A2) = L(A1)∩L(A2)

c© JPK 10

#8: Verifying Regular Safety Properties Model checking

Total NFA

Automaton A is called deterministic if

|Q0| � 1 and |δ(q, A)| � 1 for all q ∈ Q and A ∈ Σ

DFA A is called total if

|Q0| = 1 and |δ(q, A)| = 1 for all q ∈ Q and A ∈ Σ

any DFA can be turned into an equivalent total DFA

total DFA provide unique successor states, and thus, unique runs for each input word

c© JPK 11

#8: Verifying Regular Safety Properties Model checking

Determinization

For NFA A = (Q,Σ, δ,Q0, F) let Adet = (2Q, Σ, δdet , Q0, Fdet) with:

Fdet =
{
Q′ ⊆ Q | Q′ ∩ F �= ∅

}

and the total transition function δdet : 2Q × Σ → 2Q is defined by:

δdet(Q′, A) =
⋃

q∈Q′
δ(q, A)

Adet is a total DFA and, for all w ∈ Σ∗: δ∗
det(Q0, w) =

S
q0∈Q0

δ∗(q0, w)

Thus: L(Adet) = L(A)

c© JPK 12

#8: Verifying Regular Safety Properties Model checking

Determinization

{ q0 } { q0, q1 }

{ q0, q2 } { q0, q1, q2 }

A

B

B

A

B

A

A

B

a deterministic finite automaton accepting L((A + B)∗B(A + B))

c© JPK 13

#8: Verifying Regular Safety Properties Model checking

Facts about finite automata

• They are as expressive as regular languages

• They are closed under ∩ and complementation

– NFA A ⊗ B (= cross product) accepts L(A) ∩ L(B)

– Total DFA A (= swap all accept and normal states) accepts L(A) = Σ∗ \L(A)

• They are closed under determinization (= removal of choice)

– although at an exponential cost.....

• L(A) = ∅? = check for reachable accept state in A
– this can be done using a simple depth-first search

• For regular language L there is a unique minimal DFA accepting L

c© JPK 14

#8: Verifying Regular Safety Properties Model checking

Overview Lecture #8

• Regular Safety Properties

• Finite Automata in a Nutshell

⇒ Verifying Regular Safety Properties

– Reduction to Invariant Checking
– Proof of Correctness
– The Algorithm

c© JPK 15

#8: Verifying Regular Safety Properties Model checking

Peterson’s banking system

Person Left behaves as follows:

while true {
.

rq : b1, x = true, 2;

wt : wait until(x == 1 || ¬ b2) {
cs : . . . @accountL . . .}

b1 = false;

.

}

Person Right behaves as follows:

while true {
.

rq : b2, x = true, 1;

wt : wait until(x == 2 || ¬ b1) {
cs : . . . @accountR . . .}

b2 = false;

.

}

c© JPK 16

#8: Verifying Regular Safety Properties Model checking

Is the banking system safe?
x == 1

b1 = 1

b1 = 0

b2 = 0

x = 2

b1 = 1 b2 = 1

x = 1

b2 = 1

x = 1

b1 = 1

x = 2

b2 = 0
b1 = 0

x = 1

b1 = 1

x = 2

b2 = 1

x == 1 x == 2

x == 2

Can we guarantee that only one person at a time has access to the bank account?

“always ¬ (@accountL ∧ @accountR)”

c© JPK 17

#8: Verifying Regular Safety Properties Model checking

Is the banking system safe?

• Safe = at most one person may have access to the account

• Unsafe: two have access to the account simultaneously

– unsafe behaviour can be characterized by bad prefix
– alternatively (in this case) by the finite automaton:

@accountL ∧@accountR

¬ (@accountL
∧@accountR)

• Checking safety: Traces(System) ∩ BadPref(Psafe) = ∅?

– intersection, complementation and emptiness of languages . . .

c© JPK 18

#8: Verifying Regular Safety Properties Model checking

Regular safety properties

Safety property Psafe over AP is regular

if its set of bad prefixes is a regular language over 2AP

every invariant is regular

c© JPK 19

#8: Verifying Regular Safety Properties Model checking

Problem statement

Let

• Psafe be a regular safety property over AP

• A an NFA recognizing the bad prefixes of Psafe

– assume that ε /∈ L(A)

⇒ otherwise all finite words over 2AP are bad prefixes

• TS a finite transition system (over AP) without terminal states

How to establish whether TS |= Psafe?

c© JPK 20

#8: Verifying Regular Safety Properties Model checking

Basic idea of the algorithm

TS |= Psafe if and only if Tracesfin(TS) ∩ BadPref(Psafe) = ∅

if and only if Tracesfin(TS) ∩ L(A) = ∅

if and only if TS ⊗A |= “always” Φ to be proven

But this amounts to invariant checking on TS ⊗ A
⇒ checking regular safety properties can be done by depth-first search!

c© JPK 21

#8: Verifying Regular Safety Properties Model checking

Synchronous product (revisited)

For transition system TS = (S, Act,→, I, AP, L) without terminal states
and A = (Q, Σ, δ,Q0, F) an NFA with Σ = 2AP and Q0 ∩ F = ∅, let:

TS ⊗A = (S′, Act,→ ′, I ′, AP′, L′) where

• S′ = S × Q, AP′ = Q and L′(〈s, q〉) = { q }

• → ′ is the smallest relation defined by:
s α−−→ t ∧ q

L(t)−−−→ p

〈s, q〉 α−−→′ 〈t, p〉

• I ′ = { 〈s0, q〉 | s0 ∈ I ∧ ∃q0 ∈ Q0. q0
L(s0)−−−−→ q }

without loss of generality it may be assumed that TS ⊗ A has no terminal states

c© JPK 22

#8: Verifying Regular Safety Properties Model checking

Example product

red

yellow red/yellow

green

q0

q1 qF

red

yellow ∧ ¬red

¬yellow

¬red ∧ ¬yellow

〈green, q0〉 〈red/yellow, q0〉

〈yellow, q1〉 〈red, q0〉

yellow

c© JPK 23

#8: Verifying Regular Safety Properties Model checking

Verification of regular safety properties

Let TS over AP and NFA A with alphabet 2AP as before, regular safety
property Psafe over AP such that L(A) is the set of bad prefixes of Psafe.

The following statements are equivalent:

(a) TS |= Psafe

(b) Tracesfin(TS) ∩ L(A) = ∅

(c) TS ⊗A |= Pinv(A)

where Pinv(A) =
V

q∈F ¬ q

c© JPK 24

#8: Verifying Regular Safety Properties Model checking

Counterexamples

For each initial path fragment 〈s0, q1〉 . . . 〈sn, qn+1〉 of TS ⊗ A:

q1, . . . , qn �∈ F and qn+1 ∈ F ⇒ trace(s0 s1 . . . sn)| {z }
bad prefix for Psafe

∈ L(A)

c© JPK 25

#8: Verifying Regular Safety Properties Model checking

Verification algorithm

Input: finite transition system TS and regular safety property Psafe

Output: true if TS |= Psafe. Otherwise false plus a counterexample for Psafe.

Let NFA A (with accept states F) be such that L(A) = BadPref(Psafe);
Construct the product transition system TS ⊗ A;
Check the invariant Pinv(A) with proposition ¬F =

V
q∈F ¬q on TS ⊗ A

if TS ⊗ A |= Pinv(A) then
return true

else
Determine initial path fragment 〈s0, q1〉 . . . 〈sn, qn+1〉 of TS ⊗ A with qn+1 ∈ F

return (false, s0 s1 . . . sn)

fi

c© JPK 26

#8: Verifying Regular Safety Properties Model checking

Example

c© JPK 27

#8: Verifying Regular Safety Properties Model checking

Time complexity

The time and space complexity of checking a regular safety property P safe

against transition system TS is in:

O(|TS| · |A|)
where A is an NFA recognizing the bad prefixes of Psafe

c© JPK 28

#8: Verifying Regular Safety Properties Model checking

Can time complexity be improved?

The safety property Psafe is regular

if and only if

the set of minimal bad prefixes for Psafe is regular

BadPref(Psafe) is regular if and only if MinBadPref(Psafe) is regular

⇒ use automaton for minimal bad prefixes in product construction

c© JPK 29

