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#8: Verifying Regular Safety Properties Model checking

Safety properties

e LT property P, over AP is a safety property if

— forall o € (QAP)w \ Pk there exists a finite prefix o of o such that:
Py N {a’ = (2Ap>w | & is a prefix of a’} — U
e The set of bad prefixes for Ps,:
BadPref(Py.) = {5 € (2°°)" |Vo € (2°°)".G 0 & Py }
— P, is aregular safety property if BadPref( P,y ) is regular

Given regular safety property Ps,z, how to check TS |= Pyp.?
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Example regular safety properties
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#8: Verifying Regular Safety Properties Model checking

Finite automata

A nondeterministic finite automaton (NFA) A is a tuple (Q, X, 3, Qo, F') where:

e () Is a finite set of states

e X IS an alphabet A A
: . : B
e §:(Q x X — 29 s a transition function o - ‘“
B

e (Jy C @ a set of initial states

e ' C ()lIs asetof accept (or: final) states
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#8: Verifying Regular Safety Properties Model checking

Size of an NFA

The size of A, denoted |.A|, is the number of states and transitions in A:

Al = 1QI+ ) > 14aA)]

qgeQ AcX
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#8: Verifying Regular Safety Properties Model checking

Language of an automaton
e NFA A= (Q,3,),Qy, F)andwordw =A;...A, € ¥*

e Arun forwin A is a finite sequence ¢y q; ... g, such that:

— qo € Qo and qifiqi+1forall0 <1 <n
e Rungpq; ... g, 1S accepting if ¢, € F
e W € X" is accepted by A if there exists an accepting run for w
e The accepted language of A:

L(A) = {w € X* | there exists an accepting run for win A }

e NFA A and A’ are equivalent if £(A) = L(A)
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#8: Verifying Regular Safety Properties Model checking

Example runs and accepted words
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#8: Verifying Regular Safety Properties Model checking

Accepted language revisited
Extend the transition function J to * : Q x X* — 2¢ by:
0*(¢,e) ={q} and 0%(¢,A) =d(q,A)
5% (g, ArAz . An) = Upesioap 07 (0 A2 . Ay)

5" (q,w) = set of states reachable from ¢ for the word w

Then: L(A) = {W € X" | 6*(qo,W) N F # @ for some ¢y € Qo}

The class of languages accepted by NFA (over X2)

= the class of regular languages (over X2)
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#8: Verifying Regular Safety Properties

Model checking

Intersection
o Let NFA A; = (Qi, 2,65, Qo.4, F;), with i=1,2
e The product automaton
A1®As = (Q1 X Q2,%,0,Q0.1 X Qo.2, F1 X F»)

where ¢ is defined by:

A A
G114 N 22 gy

(Qb QQ) Ral (q/lv qé)

e Well-known result: L(A1®A42) = L(A1)NL(As2)
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#8: Verifying Regular Safety Properties Model checking

Total NFA

Automaton A is called deterministic If

Qo] <1 and [6(q,A)| <1 forallge QandAcY

DFA A is called total if

Qol =1 and |0(¢q,A)]=1 forallge QandA e X

any DFA can be turned into an equivalent total DFA

total DFA provide unigue successor states, and thus, unique runs for each input word
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Determinization

For NFA A = (Q, >, 5, Q(), F) let Aget = (QQ, >, 5det7 Q07 Fdet) with:
Fia ={Q'CQ|Q N F #a}

and the total transition function 6, : 29 x ¥ — 2% is defined by:

baet(QA) = | (¢, A)

At is atotal DFA and, forallw € ¥7: 6, (Qo, W) = quEQo 5" (qo, W)
Thus: L(Ay) = L(A)
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#8: Verifying Regular Safety Properties Model checking

Determinization

A
()

{ {qo} > B /{qO,ql}>
A i B

<{ q0, 42 }) A @CIO7C]17C]2D>B

a deterministic finite automaton accepting L((A + B)"B(A + B))
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#8: Verifying Regular Safety Properties Model checking

Facts about finite automata
e They are as expressive as regular languages

e They are closed under N and complementation

— NFA A ® B (= cross product) accepts L(A) N L(B)
— Total DFA A (= swap all accept and normal states) accepts L(A) = X"\ L(A)

e They are closed under determinization (= removal of choice)

— although at an exponential cost.....

e L(A) = 27? = check for reachable accept state in A

— this can be done using a simple depth-first search

e For regular language L there is a unique minimal DFA accepting £
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#8: Verifying Regular Safety Properties

Model checking

Peterson’s banking system

Person Left behaves as follows:

while true {
rq : b1, x = true, 2;
wait until(z == 1|| = b2) {
cs : ... @accounty, . ..}
b1 = false;
}

Person Right behaves as follows:

while true {
rq : ba, x = true, 1;
wait until(x == 2 || = by1) {
cs : ... @accountg ...}
by = false;
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#8: Verifying Regular Safety Properties Model checking

Is the banking system safe?

a:zzl\l/
by =0

e

Can we guarantee that only one person at a time has access to the bank account?

“always — (@account;, A @accounty)”
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#8: Verifying Regular Safety Properties Model checking

Is the banking system safe?
e Safe = at most one person may have access to the account

e Unsafe: two have access to the account simultaneously

— unsafe behaviour can be characterized by bad prefix
— alternatively (in this case) by the finite automaton:

= (Qaccounty,
A Qaccountp)

Qaccounty, \ Qaccountg .

e | Checking safety: Traces(System) N BadPref(P,) = 97

— intersection, complementation and emptiness of languages . . .
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#8: Verifying Regular Safety Properties

Model checking

Regular safety properties

Safety property P, over AP is regular

if its set of bad prefixes is a regular language over 24P

every invariant is regular
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#8: Verifying Regular Safety Properties Model checking

Problem statement

Let
o P, be aregular safety property over AP

e A an NFA recognizing the bad prefixes of P

— assumethate ¢ L(A)
= otherwise all finite words over 2°F are bad prefixes

e TS a finite transition system (over AP) without terminal states

How to establish whether TS = P;,.?
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Basic idea of the algorithm

TS = P,y ifandonlyif Tracesg,(TS) N BadPref(Ps..) = @
if and only if Tracesg,(TS) N L(A) =2

ifand only if TS® A = “always” ® to be proven

But...... this amounts to invariant checkingon TS ® A

= checking regular safety properties can be done by depth-first search!
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#8: Verifying Regular Safety Properties Model checking

Synchronous product (revisited)

For transition system TS = (.S, Act, —, I, AP, L) without terminal states
and A = (Q,%,d,Qo, F) an NFA with ¥ = 22" and Qo N F' = &, let:

TS®A = (S, Act, ', I' AP L) where

e S'=9xQ,AP" =Qand L'({s,q)) = {q}

e —'Is the smallest relation defined by:

o« )/

(s,q) —" (&, p)
o I'={(s0,q) | soel A HQOEQO-QOMQ}

without loss of generality it may be assumed that TS ® A has no terminal states
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#8: Verifying Regular Safety Properties Model checking

Example product

—red A —yellow

yellow A —red

qr

d/yell Il
red/yellow | ye ow ~ellow

green

—{(green, qo)}-——(redlyellow, qq)|

[(yellow, ql)} { (red, qo) }
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Verification of regular safety properties

Let TS over AP and NFA A with alphabet 22" as before, regular safety
property Py, over AP such that £(.A) is the set of bad prefixes of Ps,/..

The following statements are equivalent:
(@) TS = Py
(b) Traces;,(TS) N L(A) = @
() TS®A F Piwa

where Pj,,a) = /\qu —q
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#8: Verifying Regular Safety Properties

Model checking

Counterexamples

For each initial path fragment (sg, q1) . . . (Sn, gn+1) OF TS ® A:

Q,---,qn € Fandg,1 € F = trace(spsi...sn) € L(A)
bad pref&rfor Pote
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#8: Verifying Regular Safety Properties Model checking

Verification algorithm

Input: finite transition system TS and regular safety property P,
Output: true if TS = P,,. Otherwise false plus a counterexample for Piy..

Let NFA A (with accept states F’) be such that £(.A) = BadPref( Ps.);
Construct the product transition system TS ® A;
Check the invariant P;,,4) with proposition —F" = /\qu —qonTS® A

fTS® A |= Pz’nv(.A) then
return true

else
Determine initial path fragment (sq, q1) . . . (Sn, gn+1) OF TS ® A with ¢,,.1 € F
return (false, sgp s1...sn)

fi
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#8: Verifying Regular Safety Properties

Model checking

Example
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#8: Verifying Regular Safety Properties

Model checking

Time complexity

The time and space complexity of checking a regular safety property P,
against transition system TS is in:
O(|TS| - |A])

where A is an NFA recognizing the bad prefixes of Py
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Can time complexity be improved?

The safety property P, is regular
if and only if

the set of minimal bad prefixes for P, is regular

BadPref( Py, ) is regular if and only if MinBadPref( P,y ) is regular

= use automaton for minimal bad prefixes in product construction

© JPK 29



