

Model Checking Regular Safety Properties

Lecture #8 of Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

April 25, 2007

Overview Lecture #8

⇒ Regular Safety Properties

- Finite Automata in a Nutshell
- Verifying Regular Safety Properties
 - Reduction to Invariant Checking
 - Proof of Correctness
 - The Algorithm

Safety properties

- LT property P_{safe} over AP is a *safety property* if
 - for all $\sigma \in (2^{AP})^\omega \setminus P_{safe}$ there exists a finite prefix $\widehat{\sigma}$ of σ such that:

$$P_{safe} \cap \left\{ \sigma' \in (2^{AP})^\omega \mid \widehat{\sigma} \text{ is a prefix of } \sigma' \right\} = \emptyset$$

- The set of bad prefixes for P_{safe} :

$$BadPref(P_{safe}) = \{ \widehat{\sigma} \in (2^{AP})^* \mid \forall \sigma \in (2^{AP})^\omega. \widehat{\sigma} \sigma \notin P_{safe} \}$$

- P_{safe} is a *regular* safety property if $BadPref(P_{safe})$ is regular

Given regular safety property P_{safe} , how to check $TS \models P_{safe}$?

Example regular safety properties

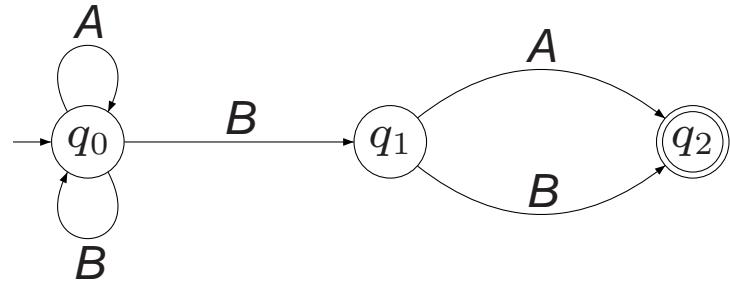
Overview Lecture #8

- Regular Safety Properties
 - ⇒ [Finite Automata in a Nutshell](#)
- Verifying Regular Safety Properties
 - Reduction to Invariant Checking
 - Proof of Correctness
 - The Algorithm

Finite automata

A *nondeterministic finite automaton* (NFA) \mathcal{A} is a tuple $(Q, \Sigma, \delta, Q_0, F)$ where:

- Q is a finite set of states
- Σ is an *alphabet*
- $\delta : Q \times \Sigma \rightarrow 2^Q$ is a *transition function*
- $Q_0 \subseteq Q$ a set of *initial states*
- $F \subseteq Q$ is a set of *accept* (or: *final*) states



Size of an NFA

The **size** of \mathcal{A} , denoted $|\mathcal{A}|$, is the number of states and transitions in \mathcal{A} :

$$|\mathcal{A}| = |Q| + \sum_{q \in Q} \sum_{A \in \Sigma} |\delta(q, A)|$$

Language of an automaton

- NFA $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$ and word $w = A_1 \dots A_n \in \Sigma^*$
- A *run* for w in \mathcal{A} is a finite sequence $q_0 q_1 \dots q_n$ such that:
 - $q_0 \in Q_0$ and $q_i \xrightarrow{A_{i+1}} q_{i+1}$ for all $0 \leq i < n$
- Run $q_0 q_1 \dots q_n$ is *accepting* if $q_n \in F$
- $w \in \Sigma^*$ is *accepted* by \mathcal{A} if there exists an accepting run for w
- The *accepted language* of \mathcal{A} :

$$\mathcal{L}(\mathcal{A}) = \{ w \in \Sigma^* \mid \text{there exists an accepting run for } w \text{ in } \mathcal{A} \}$$

- NFA \mathcal{A} and \mathcal{A}' are *equivalent* if $\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}')$

Example runs and accepted words

Accepted language revisited

Extend the transition function δ to $\delta^* : Q \times \Sigma^* \rightarrow 2^Q$ by:

$$\delta^*(q, \varepsilon) = \{ q \} \quad \text{and} \quad \delta^*(q, A) = \delta(q, A)$$

$$\delta^*(q, A_1 A_2 \dots A_n) = \bigcup_{p \in \delta(q, A_1)} \delta^*(p, A_2 \dots A_n)$$

$\delta^*(q, w)$ = set of states reachable from q for the word w

Then: $\mathcal{L}(\mathcal{A}) = \{ w \in \Sigma^* \mid \delta^*(q_0, w) \cap F \neq \emptyset \text{ for some } q_0 \in Q_0 \}$

The class of languages accepted by NFA (over Σ)

= the class of regular languages (over Σ)

Intersection

- Let NFA $\mathcal{A}_i = (Q_i, \Sigma, \delta_i, Q_{0,i}, F_i)$, with $i=1, 2$
- The *product automaton*

$$\mathcal{A}_1 \otimes \mathcal{A}_2 = (Q_1 \times Q_2, \Sigma, \delta, Q_{0,1} \times Q_{0,2}, F_1 \times F_2)$$

where δ is defined by:

$$\frac{q_1 \xrightarrow{\mathcal{A}}_1 q'_1 \wedge q_2 \xrightarrow{\mathcal{A}}_2 q'_2}{(q_1, q_2) \xrightarrow{\mathcal{A}} (q'_1, q'_2)}$$

- Well-known result: $\mathcal{L}(\mathcal{A}_1 \otimes \mathcal{A}_2) = \mathcal{L}(\mathcal{A}_1) \cap \mathcal{L}(\mathcal{A}_2)$

Total NFA

Automaton \mathcal{A} is called *deterministic* if

$$|Q_0| \leq 1 \quad \text{and} \quad |\delta(q, A)| \leq 1 \quad \text{for all } q \in Q \text{ and } A \in \Sigma$$

DFA \mathcal{A} is called *total* if

$$|Q_0| = 1 \quad \text{and} \quad |\delta(q, A)| = 1 \quad \text{for all } q \in Q \text{ and } A \in \Sigma$$

any DFA can be turned into an equivalent total DFA

total DFA provide unique successor states, and thus, unique runs for each input word

Determinization

For NFA $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$ let $\mathcal{A}_{det} = (2^Q, \Sigma, \delta_{det}, Q_0, F_{det})$ with:

$$F_{det} = \{Q' \subseteq Q \mid Q' \cap F \neq \emptyset\}$$

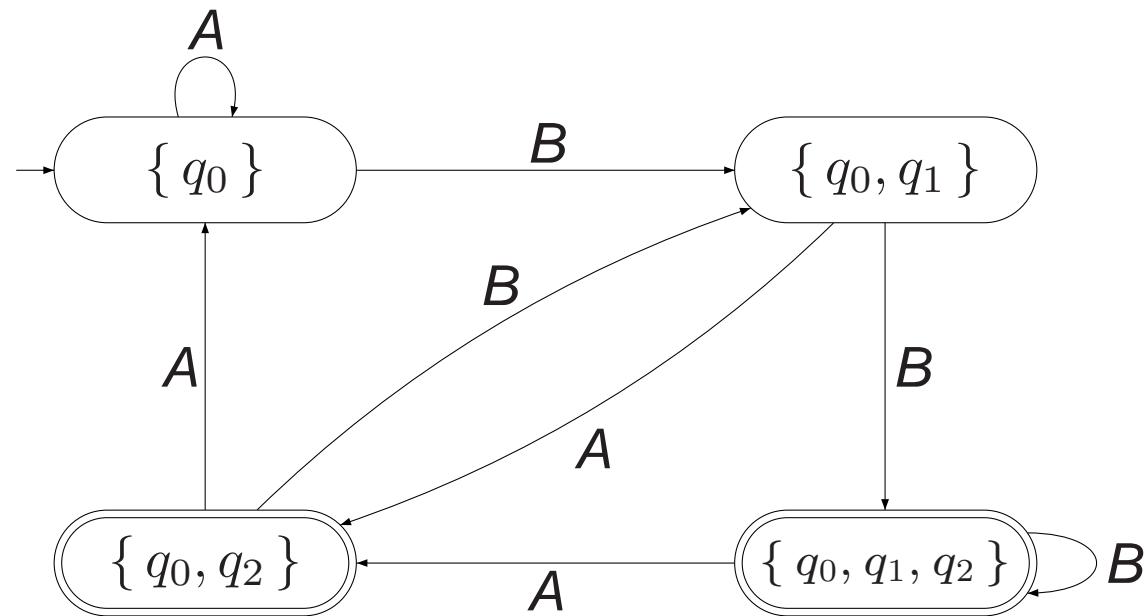
and the total transition function $\delta_{det} : 2^Q \times \Sigma \rightarrow 2^Q$ is defined by:

$$\delta_{det}(Q', A) = \bigcup_{q \in Q'} \delta(q, A)$$

\mathcal{A}_{det} is a total DFA and, for all $w \in \Sigma^*$: $\delta_{det}^*(Q_0, w) = \bigcup_{q_0 \in Q_0} \delta^*(q_0, w)$

Thus: $\mathcal{L}(\mathcal{A}_{det}) = \mathcal{L}(\mathcal{A})$

Determinization



a deterministic finite automaton accepting $\mathcal{L}((A + B)^*B(A + B))$

Facts about finite automata

- They are as expressive as **regular languages**
- They are closed under \cap and **complementation**
 - NFA $\mathcal{A} \otimes B$ (= cross product) accepts $\mathcal{L}(A) \cap \mathcal{L}(B)$
 - Total DFA $\overline{\mathcal{A}}$ (= swap all accept and normal states) accepts $\overline{\mathcal{L}(A)} = \Sigma^* \setminus \mathcal{L}(A)$
- They are closed under **determinization** (= removal of choice)
 - although at an exponential cost.....
- $\mathcal{L}(\mathcal{A}) = \emptyset?$ = check for reachable accept state in \mathcal{A}
 - this can be done using a **simple** depth-first search
- For regular language \mathcal{L} there is a unique **minimal** DFA accepting \mathcal{L}

Overview Lecture #8

- Regular Safety Properties
- Finite Automata in a Nutshell

⇒ [Verifying Regular Safety Properties](#)

- Reduction to Invariant Checking
- Proof of Correctness
- The Algorithm

Peterson's banking system

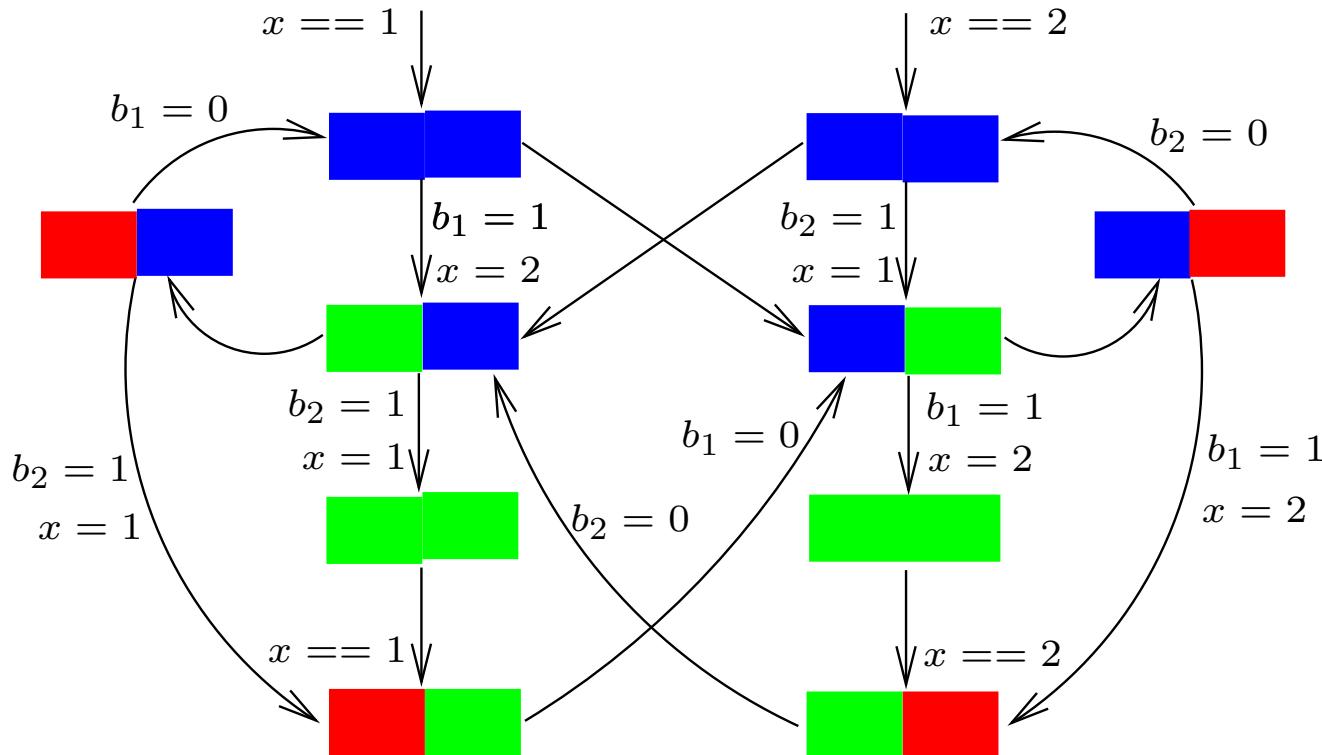
Person Left behaves as follows:

```
while true {  
    ....  
    rq : b1, x = true, 2;  
    wt : wait until(x == 1 ||  $\neg$ b2) {  
        cs : ... @accountL ...}  
        b1 = false;  
    ....  
}
```

Person Right behaves as follows:

```
while true {  
    ....  
    rq : b2, x = true, 1;  
    wt : wait until(x == 2 ||  $\neg$ b1) {  
        cs : ... @accountR ...}  
        b2 = false;  
    ....  
}
```

Is the banking system safe?



Can we guarantee that only one person at a time has access to the bank account?

“always $\neg (@\text{account}_L \wedge @\text{account}_R)$ ”

Is the banking system safe?

- Safe = at most one person may have access to the account
- Unsafe: two have access to the account simultaneously
 - unsafe behaviour can be characterized by bad prefix
 - alternatively (in this case) by the finite automaton:

- Checking safety: $Traces(\text{System}) \cap \text{BadPref}(P_{\text{safe}}) = \emptyset$?
 - intersection, complementation and emptiness of languages . . .

Regular safety properties

Safety property P_{safe} over AP is *regular*
if its set of bad prefixes is a regular language over 2^{AP}

every invariant is regular

Problem statement

Let

- P_{safe} be a regular safety property over AP
- \mathcal{A} an NFA recognizing the bad prefixes of P_{safe}
 - assume that $\varepsilon \notin \mathcal{L}(\mathcal{A})$
 \Rightarrow otherwise all finite words over 2^{AP} are bad prefixes
- TS a *finite* transition system (over AP) without terminal states

How to establish whether $TS \models P_{safe}$?

Basic idea of the algorithm

$TS \models P_{safe}$ if and only if $Traces_{fin}(TS) \cap BadPref(P_{safe}) = \emptyset$

if and only if $Traces_{fin}(TS) \cap \mathcal{L}(\mathcal{A}) = \emptyset$

if and only if $TS \otimes \mathcal{A} \models \text{“always” } \Phi$ to be proven

But this amounts to invariant checking on $TS \otimes \mathcal{A}$

⇒ checking regular safety properties can be done by depth-first search!

Synchronous product (revisited)

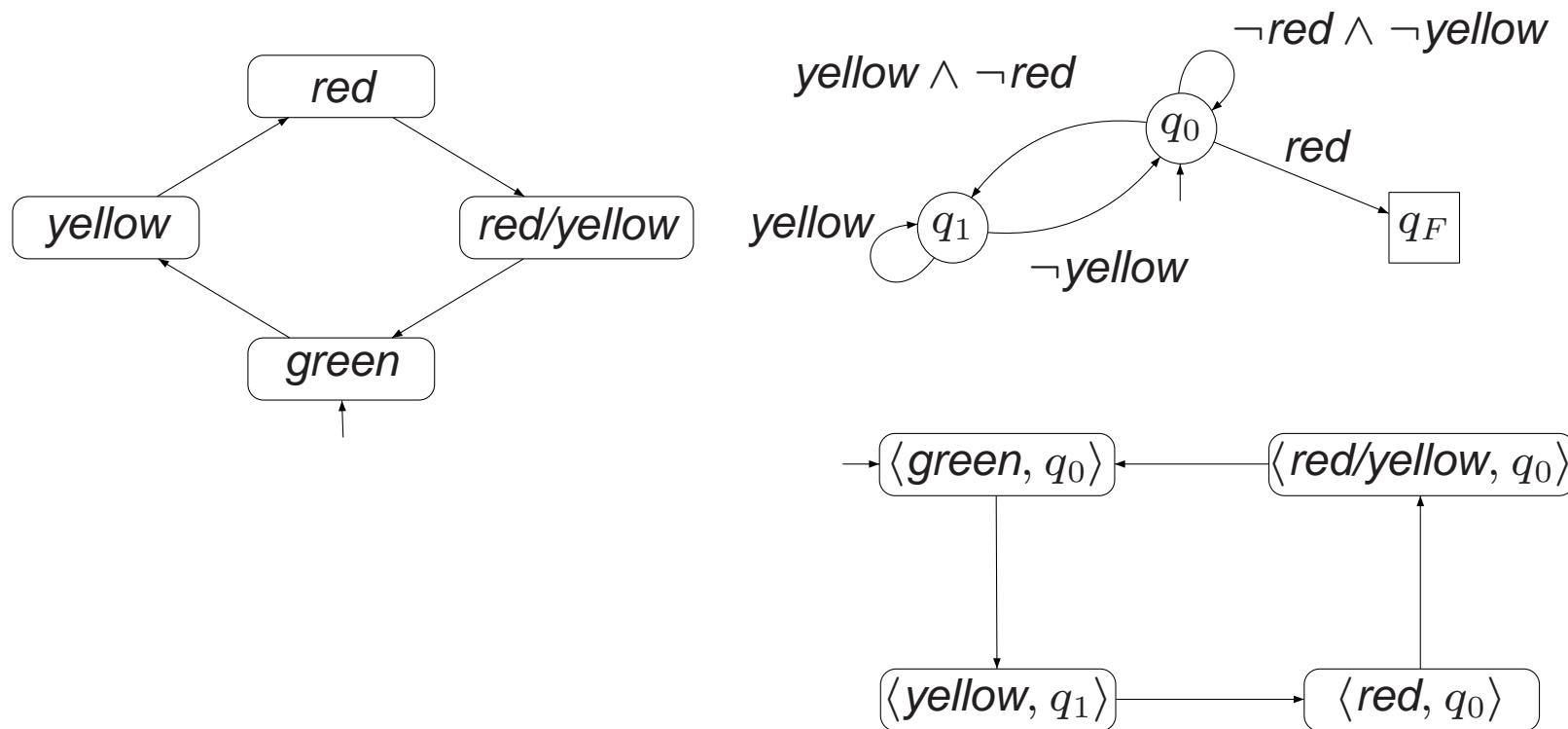
For transition system $TS = (S, Act, \rightarrow, I, AP, L)$ without terminal states and $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$ an NFA with $\Sigma = 2^{AP}$ and $Q_0 \cap F = \emptyset$, let:

$$TS \otimes \mathcal{A} = (S', Act, \rightarrow', I', AP', L') \quad \text{where}$$

- $S' = S \times Q$, $AP' = Q$ and $L'(\langle s, q \rangle) = \{ q \}$
- \rightarrow' is the smallest relation defined by:
$$\frac{s \xrightarrow{\alpha} t \wedge q \xrightarrow{L(t)} p}{\langle s, q \rangle \xrightarrow{\alpha}' \langle t, p \rangle}$$
- $I' = \{ \langle s_0, q \rangle \mid s_0 \in I \wedge \exists q_0 \in Q_0. q_0 \xrightarrow{L(s_0)} q \}$

without loss of generality it may be assumed that $TS \otimes \mathcal{A}$ has no terminal states

Example product



Verification of regular safety properties

Let TS over AP and NFA \mathcal{A} with alphabet 2^{AP} as before, regular safety property P_{safe} over AP such that $\mathcal{L}(\mathcal{A})$ is the set of bad prefixes of P_{safe} .

The following statements are equivalent:

- (a) $TS \models P_{safe}$
- (b) $Traces_{fin}(TS) \cap \mathcal{L}(\mathcal{A}) = \emptyset$
- (c) $TS \otimes \mathcal{A} \models P_{inv(A)}$

where $P_{inv(A)} = \bigwedge_{q \in F} \neg q$

Counterexamples

For each initial path fragment $\langle s_0, q_1 \rangle \dots \langle s_n, q_{n+1} \rangle$ of $TS \otimes \mathcal{A}$:

$$q_1, \dots, q_n \notin F \text{ and } q_{n+1} \in F \quad \Rightarrow \quad \underbrace{\text{trace}(s_0 s_1 \dots s_n)}_{\text{bad prefix for } P_{\text{safe}}} \in \mathcal{L}(\mathcal{A})$$

Verification algorithm

Input: finite transition system TS and regular safety property P_{safe}

Output: true if $TS \models P_{safe}$. Otherwise false plus a counterexample for P_{safe} .

Let NFA \mathcal{A} (with accept states F) be such that $\mathcal{L}(\mathcal{A}) = \text{BadPref}(P_{safe})$;

Construct the product transition system $TS \otimes \mathcal{A}$;

Check the invariant $P_{inv(\mathcal{A})}$ with proposition $\neg F = \bigwedge_{q \in F} \neg q$ on $TS \otimes \mathcal{A}$

```

if  $TS \otimes \mathcal{A} \models P_{inv(\mathcal{A})}$  then
  return true
else
  Determine initial path fragment  $\langle s_0, q_1 \rangle \dots \langle s_n, q_{n+1} \rangle$  of  $TS \otimes \mathcal{A}$  with  $q_{n+1} \in F$ 
  return (false,  $s_0 s_1 \dots s_n$ )
fi

```

Example

Time complexity

The time and space complexity of checking a regular safety property P_{safe} against transition system TS is in:

$$\mathcal{O}(|TS| \cdot |\mathcal{A}|)$$

where \mathcal{A} is an NFA recognizing the bad prefixes of P_{safe}

Can time complexity be improved?

The safety property P_{safe} is regular

if and only if

the set of minimal bad prefixes for P_{safe} is regular

$BadPref(P_{safe})$ is regular if and only if $MinBadPref(P_{safe})$ is regular
⇒ use automaton for minimal bad prefixes in product construction