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Safety properties

• LT property Psafe over AP is a safety property if

– for all σ ∈
“
2AP

”ω

\ Psafe there exists a finite prefix bσ of σ such that:

Psafe ∩
n

σ
′ ∈

“
2

AP
”ω

| bσ is a prefix of σ′
o

= ∅

• The set of bad prefixes for Psafe:

BadPref(Psafe) = { σ̂ ∈ (
2AP)∗ | ∀σ ∈ (

2AP)ω
. σ̂ σ �∈ Psafe }

– Psafe is a regular safety property if BadPref(Psafe) is regular

Given regular safety property Psafe, how to check TS |= Psafe?
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Example regular safety properties
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Finite automata

A nondeterministic finite automaton (NFA) A is a tuple (Q, Σ, δ, Q0, F ) where:

• Q is a finite set of states

• Σ is an alphabet

• δ : Q × Σ → 2Q is a transition function

• Q0 ⊆ Q a set of initial states

• F ⊆ Q is a set of accept (or: final) states

q0 q1 q2

A

B

B

A

B
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Size of an NFA

The size of A, denoted |A|, is the number of states and transitions in A:

|A| = |Q| +
∑
q∈Q

∑
A∈Σ

| δ(q, A) |
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Language of an automaton
• NFA A = (Q, Σ, δ,Q0, F ) and word w = A1 . . . An ∈ Σ∗

• A run for w in A is a finite sequence q0 q1 . . . qn such that:

– q0 ∈ Q0 and qi
Ai+1−−−−→ qi+1 for all 0 � i < n

• Run q0 q1 . . . qn is accepting if qn ∈ F

• w ∈ Σ∗ is accepted by A if there exists an accepting run for w

• The accepted language of A:

L(A) =
{

w ∈ Σ∗ | there exists an accepting run for w in A }

• NFA A and A′ are equivalent if L(A) = L(A′)
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Example runs and accepted words
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Accepted language revisited

Extend the transition function δ to δ∗ : Q × Σ∗ → 2Q by:

δ∗(q, ε) = { q } and δ∗(q, A) = δ(q, A)

δ∗(q, A1A2 . . . An) =
⋃

p∈δ(q,A1)
δ∗(p, A2 . . . An)

δ∗(q, w) = set of states reachable from q for the word w

Then: L(A) =
{

w ∈ Σ∗ | δ∗(q0, w) ∩ F �= ∅ for some q0 ∈ Q0

}

The class of languages accepted by NFA (over Σ)

= the class of regular languages (over Σ)
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Intersection

• Let NFA Ai = (Qi, Σ, δi, Q0,i, Fi), with i=1, 2

• The product automaton

A1⊗A2 = (Q1 × Q2,Σ, δ,Q0,1 × Q0,2, F1 × F2)

where δ is defined by:

q1
A−→1 q′1 ∧ q2

A−→2 q′2
(q1, q2)

A−→ (q′1, q
′
2)

• Well-known result: L(A1⊗A2) = L(A1)∩L(A2)
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Total NFA

Automaton A is called deterministic if

|Q0| � 1 and |δ(q, A)| � 1 for all q ∈ Q and A ∈ Σ

DFA A is called total if

|Q0| = 1 and |δ(q, A)| = 1 for all q ∈ Q and A ∈ Σ

any DFA can be turned into an equivalent total DFA

total DFA provide unique successor states, and thus, unique runs for each input word
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Determinization

For NFA A = (Q,Σ, δ,Q0, F ) let Adet = (2Q, Σ, δdet , Q0, Fdet) with:

Fdet =
{
Q′ ⊆ Q | Q′ ∩ F �= ∅

}

and the total transition function δdet : 2Q × Σ → 2Q is defined by:

δdet(Q′, A) =
⋃

q∈Q′
δ(q, A)

Adet is a total DFA and, for all w ∈ Σ∗: δ∗
det(Q0, w) =

S
q0∈Q0

δ∗(q0, w)

Thus: L(Adet) = L(A)
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Determinization

{ q0 } { q0, q1 }

{ q0, q2 } { q0, q1, q2 }

A

B

B

A

B

A

A

B

a deterministic finite automaton accepting L((A + B)∗B(A + B))
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Facts about finite automata

• They are as expressive as regular languages

• They are closed under ∩ and complementation

– NFA A ⊗ B (= cross product) accepts L(A) ∩ L(B)

– Total DFA A (= swap all accept and normal states) accepts L(A) = Σ∗ \L(A)

• They are closed under determinization (= removal of choice)

– although at an exponential cost.....

• L(A) = ∅? = check for reachable accept state in A
– this can be done using a simple depth-first search

• For regular language L there is a unique minimal DFA accepting L
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Peterson’s banking system

Person Left behaves as follows:

while true {
. . . . . .

rq : b1, x = true, 2;

wt : wait until(x == 1 || ¬ b2) {
cs : . . . @accountL . . .}

b1 = false;

. . . . . .

}

Person Right behaves as follows:

while true {
. . . . . .

rq : b2, x = true, 1;

wt : wait until(x == 2 || ¬ b1) {
cs : . . . @accountR . . .}

b2 = false;

. . . . . .

}
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Is the banking system safe?
x == 1

b1 = 1

b1 = 0

b2 = 0

x = 2

b1 = 1 b2 = 1

x = 1

b2 = 1

x = 1

b1 = 1

x = 2

b2 = 0
b1 = 0

x = 1

b1 = 1

x = 2

b2 = 1

x == 1 x == 2

x == 2

Can we guarantee that only one person at a time has access to the bank account?

“always ¬ (@accountL ∧ @accountR)”
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Is the banking system safe?

• Safe = at most one person may have access to the account

• Unsafe: two have access to the account simultaneously

– unsafe behaviour can be characterized by bad prefix
– alternatively (in this case) by the finite automaton:

@accountL ∧@accountR

¬ (@accountL
∧@accountR)

• Checking safety: Traces(System) ∩ BadPref(Psafe) = ∅?

– intersection, complementation and emptiness of languages . . .
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Regular safety properties

Safety property Psafe over AP is regular

if its set of bad prefixes is a regular language over 2AP

every invariant is regular
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Problem statement

Let

• Psafe be a regular safety property over AP

• A an NFA recognizing the bad prefixes of Psafe

– assume that ε /∈ L(A)

⇒ otherwise all finite words over 2AP are bad prefixes

• TS a finite transition system (over AP) without terminal states

How to establish whether TS |= Psafe?
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Basic idea of the algorithm

TS |= Psafe if and only if Tracesfin(TS) ∩ BadPref(Psafe) = ∅

if and only if Tracesfin(TS) ∩ L(A) = ∅

if and only if TS ⊗A |= “always” Φ to be proven

But . . . . . . this amounts to invariant checking on TS ⊗ A
⇒ checking regular safety properties can be done by depth-first search!
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Synchronous product (revisited)

For transition system TS = (S, Act,→, I, AP, L) without terminal states
and A = (Q, Σ, δ,Q0, F ) an NFA with Σ = 2AP and Q0 ∩ F = ∅, let:

TS ⊗A = (S′, Act,→ ′, I ′, AP′, L′) where

• S′ = S × Q, AP′ = Q and L′(〈s, q〉) = { q }

• → ′ is the smallest relation defined by:
s α−−→ t ∧ q

L(t)−−−→ p

〈s, q〉 α−−→′ 〈t, p〉

• I ′ = { 〈s0, q〉 | s0 ∈ I ∧ ∃q0 ∈ Q0. q0
L(s0)−−−−→ q }

without loss of generality it may be assumed that TS ⊗ A has no terminal states
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Example product

red

yellow red/yellow

green

q0

q1 qF

red

yellow ∧ ¬red

¬yellow

¬red ∧ ¬yellow

〈green, q0〉 〈red/yellow, q0〉

〈yellow, q1〉 〈red, q0〉

yellow
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Verification of regular safety properties

Let TS over AP and NFA A with alphabet 2AP as before, regular safety
property Psafe over AP such that L(A) is the set of bad prefixes of Psafe.

The following statements are equivalent:

(a) TS |= Psafe

(b) Tracesfin(TS) ∩ L(A) = ∅

(c) TS ⊗A |= Pinv(A)

where Pinv(A) =
V

q∈F ¬ q
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Counterexamples

For each initial path fragment 〈s0, q1〉 . . . 〈sn, qn+1〉 of TS ⊗ A:

q1, . . . , qn �∈ F and qn+1 ∈ F ⇒ trace(s0 s1 . . . sn)| {z }
bad prefix for Psafe

∈ L(A)
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Verification algorithm

Input: finite transition system TS and regular safety property Psafe

Output: true if TS |= Psafe. Otherwise false plus a counterexample for Psafe.

Let NFA A (with accept states F ) be such that L(A) = BadPref(Psafe);
Construct the product transition system TS ⊗ A;
Check the invariant Pinv(A) with proposition ¬F =

V
q∈F ¬q on TS ⊗ A

if TS ⊗ A |= Pinv(A) then
return true

else
Determine initial path fragment 〈s0, q1〉 . . . 〈sn, qn+1〉 of TS ⊗ A with qn+1 ∈ F

return (false, s0 s1 . . . sn)

fi
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Example
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Time complexity

The time and space complexity of checking a regular safety property P safe

against transition system TS is in:

O(|TS| · |A|)
where A is an NFA recognizing the bad prefixes of Psafe
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Can time complexity be improved?

The safety property Psafe is regular

if and only if

the set of minimal bad prefixes for Psafe is regular

BadPref(Psafe) is regular if and only if MinBadPref(Psafe) is regular

⇒ use automaton for minimal bad prefixes in product construction
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