

Büchi Automata

Lecture #9 of Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

Mai 2, 2007

Overview Lecture #9

⇒ Motivation: Peterson's Algorithm

- ω -Regular Languages
- Nondeterministic Büchi Automata (NBA)
- NBA and ω -Regular Languages

Peterson's banking system

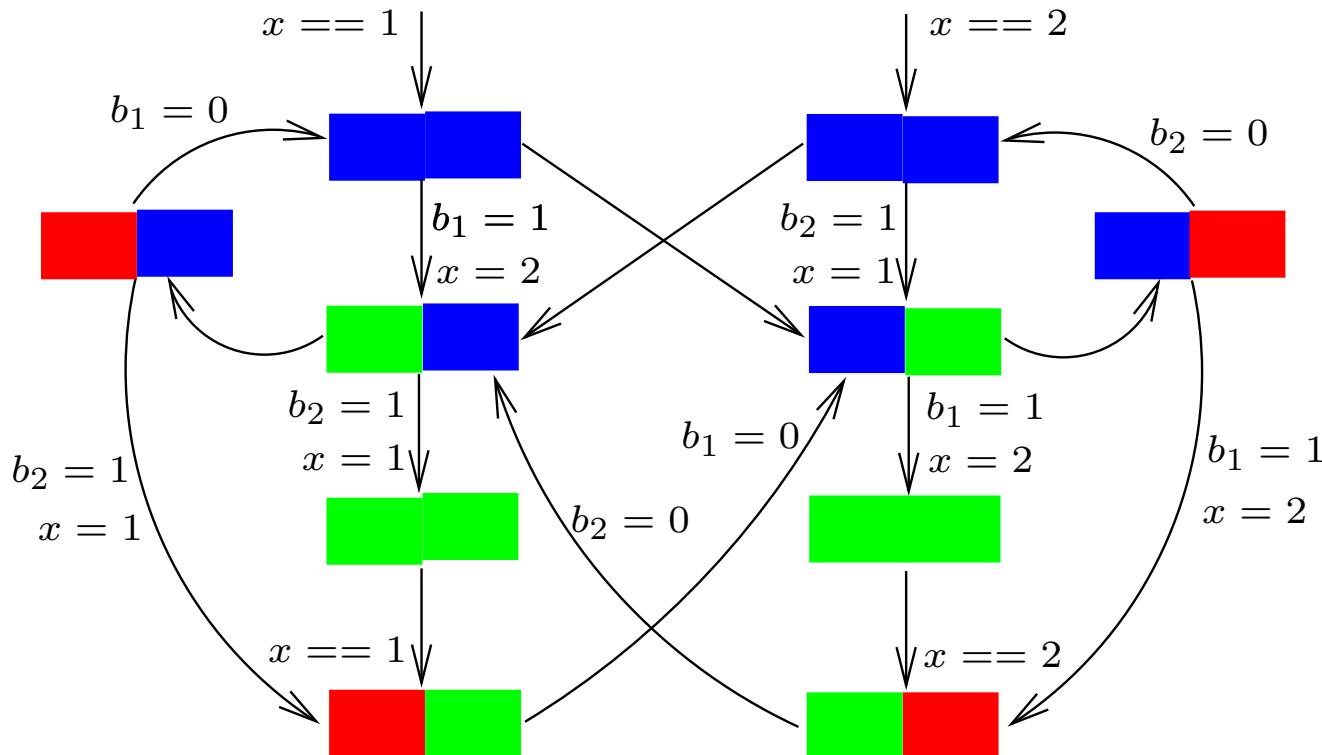
Person Left behaves as follows:

```
while true {  
    .....  
    rq : b1, x = true, 2;  
    wt : wait until(x == 1 ||  $\neg$ b2) {  
        cs : ... @accountL ...}  
        b1 = false;  
    .....  
}
```

Person Right behaves as follows:

```
while true {  
    .....  
    rq : b2, x = true, 1;  
    wt : wait until(x == 2 ||  $\neg$ b1) {  
        cs : ... @accountR ...}  
        b2 = false;  
    .....  
}
```

Is the banking system live?

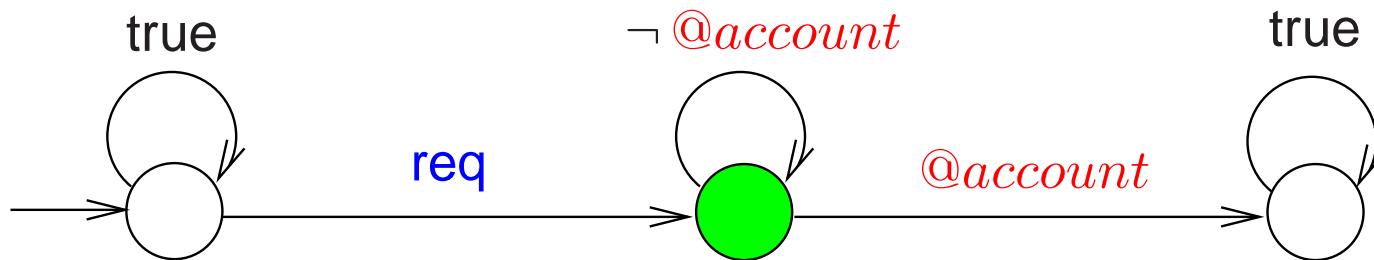


If someone wants to update the account, does he ever get the opportunity to do so?

“always ($req_L \Rightarrow$ eventually $@account_L$) \wedge always ($req_R \Rightarrow$ eventually $@account_R$)”

Is the banking system live (revisited)?

- Live = when you want access to the account, you eventually get it
- Unlive: once you want access to the account, you never get it
 - unlive behaviour can be characterized as a (set of) **infinite** traces
 - or, equivalently, by a Büchi-automaton:



- Checking liveness: $\text{Traces}(\text{System}) \cap L_\omega(\overline{\text{Live}}) = \emptyset$?
 - (explicit) complementation, intersection and emptiness of **Büchi** automata!

ω -regular expressions

1. \emptyset and ε are regular expressions over Σ
2. if $A \in \Sigma$ then \underline{A} is a regular expression over Σ
3. if E , E_1 and E_2 are regular expressions over Σ
then so are $E_1 + E_2$, $E_1.E_2$ and E^*

E^+ is an abbreviation for the regular expression $E.E^*$

An ω -regular expression G over the alphabet Σ has the form:

$$G = E_1.F_1^\omega + \dots + E_n.F_n^\omega \quad \text{for } n > 0$$

where E_i, F_i are regular expressions over Σ such that $\varepsilon \notin \mathcal{L}(F_i)$, for all $0 < i \leq n$

Semantics of ω -regular expressions

- The *semantics* of regular expression E is a language $\mathcal{L}(E) \subseteq \Sigma^*$:

$$\mathcal{L}(\emptyset) = \emptyset, \quad \mathcal{L}(\varepsilon) = \{ \varepsilon \}, \quad \mathcal{L}(A) = \{ A \}$$

$$\mathcal{L}(E+E') = \mathcal{L}(E) \cup \mathcal{L}(E') \quad \mathcal{L}(E \cdot E') = \mathcal{L}(E) \cdot \mathcal{L}(E') \quad \mathcal{L}(E^*) = \mathcal{L}(E)^*$$

- The *semantics* of ω -regular expression G is a language $\mathcal{L}(G) \subseteq \Sigma^\omega$:

$$\mathcal{L}_\omega(G) = \mathcal{L}(E_1) \cdot \mathcal{L}(F_1)^\omega \cup \dots \cup \mathcal{L}(E_n) \cdot \mathcal{L}(F_n)^\omega$$

- G_1 and G_2 are *equivalent*, denoted $G_1 \equiv G_2$, if $\mathcal{L}_\omega(G_1) = \mathcal{L}_\omega(G_2)$

ω -regular languages and properties

- $\mathcal{L} \subseteq \Sigma^\omega$ is *ω -regular* if $\mathcal{L} = \mathcal{L}_\omega(G)$ for some ω -regular expression G (over Σ)
- ω -regular languages possess several closure properties
 - they are closed under union, intersection, and complementation
 - complementation is not treated here; we use a trick to avoid it
- LT property P over AP is called *ω -regular*
if P is an ω -regular language over the alphabet 2^{AP}

all invariants and regular safety properties are ω -regular!

Examples

Büchi automata

- NFA (and DFA) are incapable of accepting infinite words
- Automata on infinite words
 - suited for accepting ω -regular languages
 - we consider nondeterministic Büchi automata (NBA)
- Accepting runs have to “check” the entire input word \Rightarrow are infinite
 \Rightarrow acceptance criteria for infinite runs are needed
- NBA are like NFA, but have a distinct *acceptance criterion*
 - one of the accept states must be visited infinitely often

Büchi automata

A *nondeterministic Büchi automaton* (NBA) \mathcal{A} is a tuple $(Q, \Sigma, \delta, Q_0, F)$ where:

- Q is a finite set of states with $Q_0 \subseteq Q$ a set of initial states
- Σ is an **alphabet**
- $\delta : Q \times \Sigma \rightarrow 2^Q$ is a **transition function**
- $F \subseteq Q$ is a set of **accept** (or: final) states

The **size** of \mathcal{A} , denoted $|\mathcal{A}|$, is the number of states and transitions in \mathcal{A} :

$$|\mathcal{A}| = |Q| + \sum_{q \in Q} \sum_{A \in \Sigma} |\delta(q, A)|$$

An example NBA

Language of an NBA

- NBA $\mathcal{A} = (Q, \Sigma, \delta, Q_0, F)$ and word $\sigma = A_0 A_1 A_2 \dots \in \Sigma^\omega$
- A *run* for σ in \mathcal{A} is an **infinite sequence** $q_0 q_1 q_2 \dots$ such that:
 - $q_0 \in Q_0$ and $q_i \xrightarrow{A_i} q_{i+1}$ for all $0 \leq i$
- Run $q_0 q_1 q_2 \dots$ is **accepting** if $q_i \in F$ for infinitely many i
- $\sigma \in \Sigma^\omega$ is **accepted** by \mathcal{A} if there exists an accepting run for σ
- The **accepted language** of \mathcal{A} :

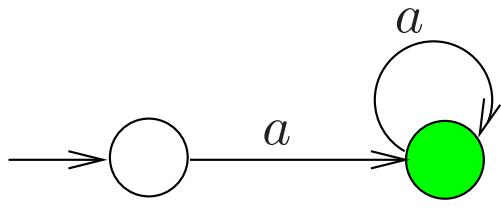
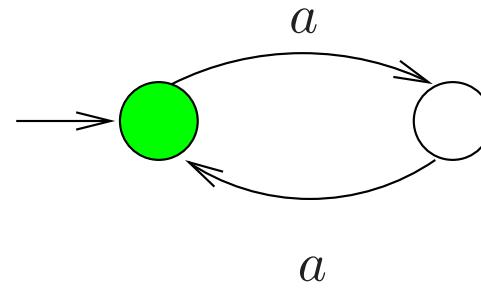
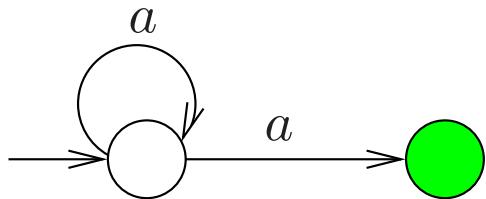
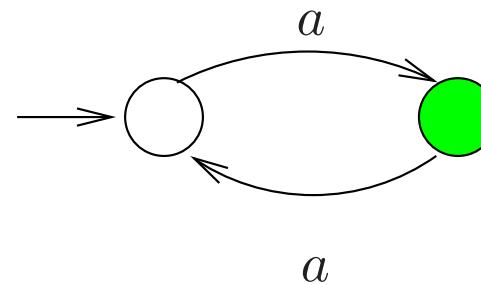
$$\mathcal{L}_\omega(\mathcal{A}) = \{ \sigma \in \Sigma^\omega \mid \text{there exists an accepting run for } \sigma \text{ in } \mathcal{A} \}$$

- NBA \mathcal{A} and \mathcal{A}' are **equivalent** if $\mathcal{L}_\omega(\mathcal{A}) = \mathcal{L}_\omega(\mathcal{A}')$

Example runs and accepted words

NBA and properties

NBA versus NFA



finite equivalence $\not\Rightarrow$ ω -equivalence

$\mathcal{L}(\mathcal{A}) = \mathcal{L}(\mathcal{A}')$, but $\mathcal{L}_\omega(\mathcal{A}) \neq \mathcal{L}_\omega(\mathcal{A}')$

ω -equivalence $\not\Rightarrow$ finite equivalence

$\mathcal{L}_\omega(\mathcal{A}) = \mathcal{L}_\omega(\mathcal{A}')$, but $\mathcal{L}(\mathcal{A}) \neq \mathcal{L}(\mathcal{A}')$

NBA and ω -regular languages

The class of languages accepted by NBA
agrees with the class of ω -regular languages

- (1) any ω -regular language is recognized by an NBA
- (2) for any NBA \mathcal{A} , the language $\mathcal{L}_\omega(\mathcal{A})$ is ω -regular

For any ω -regular language there is an NBA

- How to construct an NBA for the ω -regular expression:

$$G = E_1.F_1^\omega + \dots + E_n.F_n^\omega ?$$

where E_i and F_i are regular expressions over alphabet Σ ; $\varepsilon \notin F_i$

- Rely on operations for NBA that mimic operations on ω -regular expressions:
 - (1) for NBA \mathcal{A}_1 and \mathcal{A}_2 there is an NBA accepting $\mathcal{L}_\omega(\mathcal{A}_1) \cup \mathcal{L}_\omega(\mathcal{A}_2)$
 - (2) for any regular language \mathcal{L} with $\varepsilon \notin \mathcal{L}$ there is an NBA accepting \mathcal{L}^ω
 - (3) for regular language \mathcal{L} and NBA \mathcal{A}' there is an NBA accepting $\mathcal{L}.\mathcal{L}_\omega(\mathcal{A}')$

Union of NBA

For NBA \mathcal{A}_1 and \mathcal{A}_2 (both over the alphabet Σ)

there exists an NBA \mathcal{A} such that:

$$\mathcal{L}_\omega(\mathcal{A}) = \mathcal{L}_\omega(\mathcal{A}_1) \cup \mathcal{L}_\omega(\mathcal{A}_2) \quad \text{and} \quad |\mathcal{A}| = \mathcal{O}(|\mathcal{A}_1| + |\mathcal{A}_2|)$$

ω -operator for NFA

For each NFA \mathcal{A} with $\varepsilon \notin \mathcal{L}(\mathcal{A})$ there exists an NBA \mathcal{A}' such that:

$$\mathcal{L}_\omega(\mathcal{A}') = \mathcal{L}(\mathcal{A})^\omega \quad \text{and} \quad |\mathcal{A}'| = \mathcal{O}(|\mathcal{A}|)$$

Concatenation of an NFA and an NBA

For NFA \mathcal{A} and NBA \mathcal{A}' (both over the alphabet Σ)

there exists an NBA \mathcal{A}'' with

$$\mathcal{L}_\omega(\mathcal{A}'') = \mathcal{L}(\mathcal{A}) \cdot \mathcal{L}_\omega(\mathcal{A}') \quad \text{and} \quad |\mathcal{A}''| = \mathcal{O}(|\mathcal{A}| + |\mathcal{A}'|)$$

Summarizing the results so far

For any ω -regular language \mathcal{L}
there exists an NBA \mathcal{A} with $\mathcal{L}_\omega(\mathcal{A}) = \mathcal{L}$

NBA accept ω -regular languages

For each NBA \mathcal{A} : $\mathcal{L}_\omega(\mathcal{A})$ is ω -regular

Example