
Errata

Thanks to the Model Checking Reading Club at the Radboud University of Nijmegen, The Netherlands (in particular David N. Jansen and Frits W. Vaandrager), Dave Parker (Oxford University, UK), René Thiemann (U. Innsbruck, Austria), Ahmed Khademzadeh (Azad University of Mashhad, Iran), Alexander Nyßen and Daniel Weber (RWTH Aachen University) and the students at RWTH Aachen University attending the “Model Checking” lecture.

Comments are provided as:

⟨ page number ⟩ ⟨ line number ⟩ ⟨ short quote of the wrong word(s) ⟩ ▷ ⟨ correction ⟩

Chapter 1: System Verification

pp. 1, l. -5, *Pentium II* ▷ Pentium

pp. 5, l. 9, *lines of code lines* ▷ lines of code

pp. 5, l. footnote, *much higher* ▷ as the number of lines of code in the “golden” version of Windows95 is about 15 million, the error rate is in fact lower than normal.

pp. 6, l. 4, *Pentium II* ▷ Pentium

Chapter 2: Modeling Concurrent Systems

pp. 25, l. 11, *heading Example 2.8* ▷ Execution fragments of the Beverage Vending Machine

pp. 27, l. -15, *function λ_y* ▷ The function λ_y has no impact on the transitions (as suggested), but only affects the state labeling.

pp. 31, l. Fig. 2.3, *beer, soda* ▷ *bget* and *sget*, respectively

pp. 31, l. Fig. 2.3, *state with 1 beer, 2 soda* ▷ the grey circle should be a white circle.

pp. 46, l. Fig. 2.9, *locations in PG_2* ▷ should be subscripted with 2 (rather than 1)

pp. 48, l. -1, $H = Act_1 \cap Act_2$ ▷ $H = (Act_1 \cap Act_2) \setminus \{\tau\}$

pp. 51, l. Fig. 2.12, $T_1 \parallel T_2$ ▷ $TS_1 \parallel TS_2$ (this occurs twice)

- pp. 51, l. -7, *all trains* \triangleright the train
- pp. 52, l. 3, *(above)* \triangleright (page 54)
- pp. 53, l. -1, *finite set of channels* \triangleright set of channels
- pp. 54, l. Fig. 2.16, *the transition labeled approach emanating from state $\langle far, 3, down \rangle$* \triangleright should be removed, and all the states that thus become unreachable
- pp. 54, l. Fig. 2.16, *the transition exit emanating from state $\langle in, 1, up \rangle$* \triangleright should be removed, and all the states that thus become unreachable
- pp. 62, l. -3, *gen-msg(1)* \triangleright *snd-msg(1)*
- pp. 64, l. 4, *ack* \triangleright message
- pp. 65, l. Fig. 2.21, *second do* \triangleright **od**
- pp. 71, l. 15, *label in conclusion of inference rule cle* \triangleright it is meant that the value of expression e is transferred; cf. Exercise 2.8, pp. 85
- pp. 74, l. 1, $\xi[c := v_2 \dots v_k] \triangleright \xi' = \xi[c := v_2 \dots v_k]$
- pp. 74, l. 1, $\xi[c := v_1 \dots v_k v] \triangleright \xi' = \xi[c := v_1 \dots v_k v]$
- pp. 76, l. Figure 2.23 (top), $x \triangleright x'$

Chapter 3: Linear-Time Properties

- pp. 89, l. 9, *parallel systems* \triangleright reactive systems
- pp. 91, l. 7, *a deadlock occurs when all philosophers* \triangleright a deadlock may occur when all philosophers
- pp. 93, l. Fig. 3.3, *state available_i* \triangleright *available_{i,i}*
- pp. 93, l. Fig. 3.3, *state available_{i+1}* \triangleright *available_{i,i+1}*
- pp. 96, l. 3, *finite paths* \triangleright finite path fragments
- pp. 96, l. 4, *infinite path* \triangleright infinite path fragment
- pp. 101, l. -3, *red₁ green₂* \triangleright *red₁, green₂*
- pp. 103, l. 11, *lwait_i* \triangleright *wait_i*
- pp. 103, l. 11, $\exists k \geq j. \text{wait}_i \in A_k \triangleright \exists k \geq j. \text{wait}_i \notin A_k$
- pp. 111, l. Theorem 3.21, $M = \sum_{s \in S} |\text{Post}(s)| \triangleright M = \sum_{s \in \text{Reach}(TS)} |\text{Post}(s)|$
- pp. 111, l. 22, *The time needed to check $s \models \Phi$ is linear in the length of Φ* \triangleright Add: This implicitly assumes that $a \in L(s)$ can be checked in $\mathcal{O}(1)$ time.

pp. 115, l. Lemma 3.27, *Proof* \triangleright add the following sentence to the beginning of the proof: First note that for $P = (2^{AP})^\omega$ the claim trivially holds, since $\text{closure}(P) = P$ and the fact that P is a safety property since \overline{P} is empty. In the remainder of the proof we consider $P \neq (2^{AP})^\omega$.

pp. 124, l. -3, *By definition* \triangleright By Lemma 3.27

pp. 130, l. 3, *without being taken beyond* \triangleright without being taken infinitely often beyond

pp. 131, l. 17, *assignment* $x = -1$ \triangleright assignment $x := -1$

pp. 132, l. 2, *an execution fragment ... but not strongly A-fair.* \triangleright an execution fragment that visits infinitely many states in which no A -action is enabled is weakly A -fair (as the premise of weak A -fairness does not hold) but may not be strongly A -fair.

pp. 134, l. 10, *any finite trace is fair by default* \triangleright any finite trace is strongly or weakly fair by default

pp. 136, l. -5, *strong fairness property* \triangleright fairness property

pp. 138, l. 4, *It forces synchronization actions to happen infinitely often.* \triangleright It forces synchronization actions to happen infinitely often provided they are enabled infinitely often.

pp. 138, l. -14, *This requires that ... is enabled.* \triangleright This requires that infinitely often a synchronization takes place when such synchronization is infinitely often enabled.

pp. 145, l. Exercise 3.5(g), *between zero and two* \triangleright between zero and non-zero

Chapter 4: Regular Properties

pp. 157, l. -11, $w = A_1 \dots A_n \in \Sigma$ \triangleright $w = A_1 \dots A_n \in \Sigma^*$

pp. 157, l. -10, *starts in Q_0* \triangleright starts in state Q_0

pp. 157, l. -4, Q_0 \triangleright $\{Q_0\}$

pp. 158, l. -14, *NFAs can be much more efficient.* \triangleright NFAs can be much smaller.

pp. 161, l. -9, (2) ... *for all* $1 \leq i < n$ \triangleright ... *for all* $0 \leq i < n$. (Note: the invariant false has minimal bad prefix ε .)

pp. 161, l. -8, $1 \leq i < n$ \triangleright $0 \leq i < n$

pp. 163, l. Example 4.15, *Minimal bad prefixes for this safety property constitute the language* $\{ \text{pay}^n \text{drink}^{n+1} \mid n \geq 0 \}$ \triangleright Bad prefixes for this safety property constitute the language $\{ \sigma \in (2^{\{\text{pay}, \text{drink}\}})^\omega \mid w(\sigma, \text{drink}) > w(\sigma, \text{pay}) \}$ where $w(\sigma, a)$ denotes the number of occurrences of a in σ .

pp. 164, l. -8, *path fragment* π \triangleright initial path fragment π

pp. 164, l. -6, $TS \otimes \mathcal{A}$ which has an initial state $\triangleright TS \otimes \mathcal{A}$ such that there exists an initial state

pp. 167, l. 7, 11, -4, $P_{inv(A)} \triangleright P_{inv(\mathcal{A})}$

pp. 167, l. -2, $q_1, \dots, q_n \notin F \triangleright$ Note: this condition is not necessary.

pp. 168, l. 1, 0 $\leq i \leq n \triangleright 0 < i \leq n$

pp. 171, l. 8, *single word* \triangleright a set containing a single word

pp. 177, l. -7, *Example 4.13 on page 161* \triangleright Example 4.14 on page 162

pp. 183, l. -3, -1, $\mathcal{L}_{q_1 q_3} = \dots \triangleright \mathcal{L}_{q_1 q_3} = C^* AB(B + BC^* AB)^*$

pp. 196, l. Example 4.57, *page 193* \triangleright page 194

pp. 200, l. -7, $\bigwedge_{q \in Q} \triangleright \bigwedge_{q \in F}$

pp. 206, l. Proof:, $TS = (S, Act, \rightarrow, I, AP) \triangleright TS = (S, Act, \rightarrow, I, AP, L)$

Chapter 5: Linear Temporal Logic

pp. 230, l. 5, *eventually in the future* \triangleright now or eventually in the future

pp. 236, l. Figure 5.2, \triangleright It is assumed that $\sigma = A_0 A_1 A_2 \dots$

pp. 276, l. -11, $\psi \in B$ if and only if $\dots \triangleright \psi \in B$ if and only if \dots

pp. 283, l. 10, $\neq \bigcirc \psi \in B$ if and $\dots \triangleright \neg \bigcirc \psi \in B$ if and \dots

pp. 283, l. 17, *and* $\varphi = \bigcirc a \in B_1, B_2 \triangleright$ *and* $\varphi = a \in B_1, B_2$

pp. 287, l. -5, $|\neg(fair \rightarrow \varphi)| = |fair| + |\varphi| \triangleright |\neg(fair \rightarrow \varphi)| = |\neg(fair \vee \neg\varphi)| = |fair| + |\varphi| + 3$

pp. 292, l. Figure 5.23, \triangleright the self-loop at state $P(n)$ should be omitted

pp. 292, l. -1, $\bigcirc^{2i-1}(q, A, i) \rightarrow \triangleright$ *begin* \wedge $\bigcirc^{2i-1}(q, A, i) \rightarrow$

pp. 294, l. -6, $\mathcal{G}_\varphi \triangleright \mathcal{G}_\varphi$

pp. 303, l. Exercise 5.7(b), $W \triangleright Y$ (to avoid confusion with unless)

Chapter 6: Computation Tree Logic

pp. 327, l. -12, *since* $\exists(\varphi \mathbf{U} \psi \vee \square \varphi) \triangleright$ *since* $\forall(\varphi \mathbf{U} \psi \vee \square \varphi)$

-
- pp. 338, l. -5 and -6, \triangleright transitions to s'_{n-1} are non-existing for $n=0$
- pp. 342, l. -8 and -4, *maximal genuine* \triangleright maximal proper
- pp. 343, l. 4, *subformula of* Ψ \triangleright subformula of Ψ'
- pp. 345, l. -2, $\text{Sat}(\exists(\Phi \cup \Psi)) \triangleright \text{Sat}(\exists(\Phi \cup \Psi))$
- pp. 349, l. -9, $(a = c) \wedge (a \neq b) \triangleright (a \leftrightarrow c) \wedge (a \not\leftrightarrow b)$
- pp. 351, l. Algorithm 15, \triangleright comments in the first two lines of algorithm need to be swapped while replace E by T and TV by E
- pp. 358, l. 11, \triangleright Note that the length of $\Phi_n \in \mathcal{O}(n!)$
- pp. 371, l. -6, *ifstatement* \triangleright if statement
- pp. 372, l. Algorithm 19, line 4, $C \cap \text{Sat}(b_j) \neq \emptyset \triangleright C \cap \text{Sat}(b_i) \neq \emptyset$
- pp. 378, l. -6, *Eaxmple* \triangleright Example
- pp. 388, l. $x, x'_1 \triangleright$ pp.
- , l. [, 1 \triangleright e
- x] 390Algorithm 20, line 4 $f_{j+1}(\bar{x}) := f_{j+1}(\bar{x}) \vee \dots f_{j+1}(\bar{x}) := f_j(\bar{x}) \vee \dots$ pp. 391, l. Algorithm 21, line 4, $f_{j+1}(\bar{x}) := f_{j+1}(\bar{x}) \wedge \dots \triangleright f_{j+1}(\bar{x}) := f_j(\bar{x}) \wedge \dots$
- pp. 393, l. Figure 6.21, right, *solid line* z_3 *between* 0 \triangleright dashed line z_3 *between* 0
- pp. 405, l. 2,3, $z = m = a_m, z_m = b_m, \dots, z_i = a_i, z_i = b_i \triangleright z = m = a_m, y_m = b_m, \dots, z_i = a_i, y_i = b_i$
- pp. 469, l. Remark 7.19, line 10, $s_2 \models \varphi$, but $s_1 \not\models \varphi \triangleright s_2 \not\models \neg\varphi$, but $s_1 \models \neg\varphi$

Chapter 7: Equivalences and Abstraction

- pp. 578, l. item 3., *self-loops* $[s]_{div} \rightarrow [s]_{div} \triangleright$ self-loops $[s] \rightarrow [s]$

Chapter 10: Probabilistic Systems

- pp. 778, l. 4, $\mathbf{P}'(s, t) = \dots \triangleright$
- $$\mathbf{P}'(s, t) = \begin{cases} 1 & \text{if } s = t \text{ and } s \in B \cup S \setminus (C \cup B) \\ 0 & \text{if } s \neq t \text{ and } s \in B \cup S \setminus (C \cup B) \\ \mathbf{P}(s, t) & \text{otherwise.} \end{cases}$$

pp. 857, l. 2, $\sum_{s \in S? \setminus \{s\}} \mathbf{P}(s, \alpha, t) \cdot x_t \triangleright - \sum_{s \in S? \setminus \{s\}} \mathbf{P}(s, \alpha, t) \cdot x_t$

pp. 870, l. Lemma 10.119, any $s \in S \triangleright$ any $s \in T$

pp. 876, l. 11, $U_{\square \diamond P} \triangleright U_{\square \diamond B}$

pp. 903, l. Exercise 10.14, $\varphi = \square \diamond a \triangleright \varphi = \diamond \square a$

pp. 903/904, l. Exercise 10.17, *Markov chain \mathcal{M}* \triangleright Markov chain \mathcal{M} where all states are equally labeled

pp. 905, l. Exercise 10.22, \triangleright Compute also the values $y_s = \Pr^{\max}(s \models C \cup B)$ with $C = S \setminus \{s_3\}$ and $B = \{s_6\}$

pp. 905, l. Exercise 10.23, (a), 1. and (b) \triangleright (a), (b), (c)

Appendix

pp. 918, l. 8, *not to 1* \triangleright not to n