
1

Errata

Thanks to the Model Checking Reading Club at the Radboud University of Nijmegen,
The Netherlandsw (in particular David N. Jansen and Frits W. Vaandrager), Dave Parker
(Oxford University, UK), René Thiemann (U. Innsbruck, Austria), Ahmed Khademzadeh
(Azad University of Mashhad, Iran), Alexander Nyßen and Daniel Weber (RWTH Aachen
University) and the students at RWTH Aachen University attending the “Model Checking”
lecture.

Comments are provided as:

〈 page number 〉 〈 line number 〉 〈 short quote of the wrong word(s) 〉 � 〈 correction 〉

Chapter 1: System Verification

pp. 1, l. -5, Pentium II � Pentium

pp. 5, l. 9, lines of code lines � lines of code

pp. 5, l. footnote, much higher � as the number of lines of code in the “golden” version
of Windows95 is about 15 million, the error rate is in fact lower than normal.

pp. 6, l. 4, Pentium II � Pentium

Chapter 2: Modeling Concurrent Systems

pp. 25, l. 11, heading Example 2.8 � Execution fragments of the Beverage Vending Ma-
chine

pp. 27, l. -15, function λy � The function λy has no impact on the transitions (as sug-
gested), but only affects the state labeling.

pp. 31, l. Fig. 2.3, beer, soda � bget and sget, respectively

pp. 31, l. Fig. 2.3, state with 1 beer, 2 soda � the grey circle should be a white circle.

pp. 46, l. Fig. 2.9, locations in PG2 � should be subscripted with 2 (rather than 1)

pp. 48, l. -1, H = Act1 ∩ Act2 � H = (Act1 ∩ Act2) \ { τ }
pp. 51, l. Fig. 2.12, T1 ‖ T2 � TS1 ‖ TS2 (this occurs twice)

2

pp. 51, l. -7, all trains � the train

pp. 52, l. 3, (above) � (page 54)

pp. 53, l. -1, finite set of channels � set of channels

pp. 54, l. Fig. 2.16, the transition labeled approach emanating from state 〈far , 3, down〉 �
should be removed, and all the states that thus become unreachable

pp. 54, l. Fig. 2.16, the transition labeled exit emanating from state 〈in, 1, up〉 � should
be removed, and all the states that thus become unreachable

pp. 62, l. -3, gen msg(1) � snd msg(1)

pp. 64, l. 4, ack � message

pp. 65, l. Fig. 2.21, second do � od

pp. 71, l. 15, label in conclusion of inference rule c!e � it is meant that the value of
expression e is transferred; cf. Exercise 2.8, pp. 85

pp. 74, l. 1, ξ[c := v2 . . . vk] � ξ′ = ξ[c := v2 . . . vk]

pp. 74, l. 1, ξ[c := v1 . . . vkv] � ξ′ = ξ[c := v1 . . . vkv]

pp. 76, l. Figure 2.23 (top), x � x′

Chapter 3: Linear-Time Properties

pp. 89, l. 9, parallel systems � reactive systems

pp. 91, l. 7, a deadlock occurs when all philosophers � a deadlock may occur when all
philosophers

pp. 93, l. Fig. 3.3, state availablei � availablei,i

pp. 93, l. Fig. 3.3, state availablei+1 � availablei,i+1

pp. 96, l. 3, finite paths � finite path fragments

pp. 96, l. 4, infinite path � infinite path fragment

pp. 101, l. -3, red1 green2 � red1, green2

pp. 103, l. 11, lwaiti � waiti
pp. 103, l. 11, ∃k � j.wait i ∈ Ak � ∃k � j.wait i �∈ Ak

pp. 111, l. Theorem 3.21, M =
∑

s∈S |Post(s)| � M =
∑

s∈Reach(TS) |Post(s)|
pp. 111, l. 22, The time needed to check s |= Φ is linear in the length of Φ � Add: This
implicitly assumes that a ∈ L(s) can be checked in O(1) time.

3

pp. 115, l. Lemma 3.27, Proof � add the following sentence to the beginning of the proof:
First note that for P = (2AP)ω the claim trivially holds, since closure(P) = P and the fact
that P is a safety property since P is empty. In the remainder of the proof we consider
P �= (2AP)ω.

pp. 124, l. -3, By definition � By Lemma 3.27

pp. 130, l. 3, without being taken beyond � without being taken infinitely often beyond

pp. 131, l. 17, assignment x = −1 � assignment x := −1

pp. 132, l. 2, an execution fragment . . . but not strongly A-fair. � an execution fragment
that visits infinitely many states in which no A-action is enabled is weakly A-fair (as the
premise of weak A-fairness does not hold) but may not be strongly A-fair.

pp. 134, l. 10, any finite trace is fair by default � any finite trace is strongly or weakly
fair by default

pp. 136, l. -5, strong fairness property � fairness property

pp. 138, l. 4, It forces synchronization actions to happen infinitely often. � It forces syn-
chronization actions to happen infinitely often provided they are enabled infinitely often.

pp. 138, l. -14, This requires that . . . is enabled. � This requires that infinitely often a
synchronization takes place when such synchronization is infinitely often enabled.

pp. 145, l. Exercise 3.5(g), between zero and two � between zero and non-zero

Chapter 4: Regular Properties

pp. 157, l. -11, w = A1 . . . An ∈ Σ � w = A1 . . . An ∈ Σ∗

pp. 157, l. -10, starts in Q0 � starts in state Q0

pp. 157, l. -4, Q0 � {Q0 }
pp. 158, l. -14, NFAs can be much more efficient. � NFAs can be much smaller.

pp. 161, l. -9, (2) ... for all 1 � i < n � ... for all 0 � i < n. (Note: the invariant false
has minimal bad prefix ε.)

pp. 161, l. -8, 1 � i < n � 0 � i < n

pp. 163, l. Example 4.15, Minimal bad prefixes for this safety property constitute the lan-
guage { payndrinkn+1 | n � 0 } � Bad prefixes for this safety property constitute the
language {σ ∈ (

2{pay,drink})ω | w(σ, drink) > w(σ, pay) } where w(σ, a) denotes the num-
ber of occurrences of a in σ.

pp. 164, l. -8, path fragment π � initial path fragment π

4

pp. 164, l. -6, TS⊗A which has an initial state � TS⊗A such that there exists an initial
state

pp. 167, l. 7, 11, -4, Pinv(A) � Pinv(A)

pp. 167, l. -2, q1, . . . , qn �∈ F � Note: this condition is not necessary.

pp. 168, l. 1, 0 � i � n � 0 < i � n

pp. 171, l. 8, single word � a set contaning a single word

pp. 177, l. -7, Example 4.13 on page 161 � Example 4.14 on page 162

pp. 183, l. -3, -1, Lq1q3 = . . . � Lq1q3 = C∗AB(B +BC∗AB)∗

pp. 196, l. Example 4.57, page 193 � page 194

pp. 200, l. -7,
∧

q∈Q �
∧

q∈F

pp. 206, l. Proof:, TS = (S,Act,→, I,AP) � TS = (S,Act,→, I,AP, L)

Chapter 5: Linear Temporal Logic

pp. 230, l. 5, eventually in the future � now or eventually in the future

pp. 236, l. Figure 5.2, � It is assumed that σ = A0A1A2 . . .

pp. 276, l. -11, ψ ∈ Bif and only if . . . � ψ ∈ B if and only if . . .

pp. 283, l. 10, �= ©ψ ∈ B if and . . . � ¬© ψ ∈ B if and . . .

pp. 283, l. 17, and ϕ = © a ∈ B1, B2 � and ϕ = a ∈ B1, B2

pp. 287, l. -5, |¬(fair → ϕ)| = |fair | + |ϕ| � |¬(fair → ϕ)| = |¬(fair ∨ ¬ϕ)| =
|fair | + |ϕ| + 3

pp. 292, l. Figure 5.23, � the self-loop at state P (n) should be omitted

pp. 292, l. -1, ©2i−1(q,A, i) → � begin ∧ © 2i−1(q,A, i) →
pp. 294, l. -6, Gvarphi � Gϕ

pp. 303, l. Exercise 5.7(b), W � Y (to avoid confusion with unless)

Chapter 6: Computation Tree Logic

pp. 327, l. -12, since ∃(ϕUψ ∨ �ϕ) � since ∀(ϕUψ ∨ �ϕ)

5

pp. 338, l. -5 and -6, � transitions to s′n−1 are non-existing for n=0

pp. 342, l. -8 and -4, maximal genuine � maximal proper

pp. 343, l. 4, subformula of Ψ � subformula of Ψ′

pp. 345, l. -2, Sat(∃(Φ UΨ) � Sat(∃(Φ UΨ))

pp. 349, l. -9, (a = c)∧ (a �= b) � (a↔ c)∧ (a �↔ b)

pp. 351, l. Algorithm 15, � comments in the first two lines of algorithm need to be
swapped while replace E by T and TV by E

pp. 358, l. 11, � Note that the length of Φn ∈ O(n!)

pp. 371, l. -6, ifstatement � if statement

pp. 372, l. Algorithm 19, line 4, C ∩ Sat(bj) �= ∅ � C ∩ Sat(bi) �= ∅

pp. 378, l. -6, Eaxmple � Example

pp. 388, l. x, x′1 � pp.
, l. [, 1 � e

x] 390Algorithm 20, line 4fj+1(x̄) := fj+1(x̄) ∨ . . .fj+1(x̄) := fj(x̄) ∨ . . . pp. 391, l. Algo-
rithm 21, line 4, fj+1(x̄) := fj+1(x̄) ∧ . . . � fj+1(x̄) := fj(x̄) ∧ . . .
pp. 393, l. Figure 6.21, right, solid line z3 between 0 � dashed line z3 between 0

pp. 405, l. 2,3, z = m = am, zm = bm, . . . , zi = ai, zi = bi � z = m = am, ym =
bm, . . . , zi = ai, yi = bi

pp. 469, l. Remark 7.19, line 10, s2 |= ϕ, but s1 �|= ϕ � s2 �|= ¬ϕ, but s1 |= ¬ϕ

Chapter 7: Equivalences and Abstraction

pp. 578, l. item 3., self-loops [s]div → [s]div � self-loops [s] → [s]

Chapter 10: Probabilistic Systems

pp. 778, l. 4, P′(s, t) = . . . �

P′(s, t) =




1 if s = t and s ∈ B ∪ S \ (C ∪B)

0 if s �= t and s ∈ B ∪ S \ (C ∪B)

P(s, t) otherwise.

6

pp. 857, l. 2,
∑

s∈S?\{s}
P(s, α, t) · xt � −

∑
s∈S?\{s}

P(s, α, t) · xt

pp. 870, l. Lemma 10.119, any s ∈ S � any s ∈ T

pp. 876, l. 11, U�♦P � U�♦B

pp. 903, l. Exercise 10.14, ϕ = � ♦ a � ϕ = ♦ � a

pp. 903/904, l. Exercise 10.17, Markov chain M � Markov chain M where all states are
equally labeled

pp. 905, l. Exercise 10.22, � Compute also the values ys = Prmax(s |= C UB) with
C = S \ { s3 } and B = { s6 }
pp. 905, l. Exercise 10.23, (a), 1. and (b) � (a), (b), (c)

Appendix

pp. 918, l. 8, not to 1 � not to n

