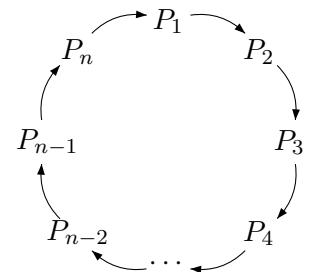


Introduction to Model Checking
 Winter term 08/09

– Series 2 –

Hand in on November 7 before the exercise class.

Exercise 1


(2 + 2 points)

Consider the following leader election algorithm: For $n \in \mathbb{N}$, n processes P_1, \dots, P_n are located in a ring topology where each process is connected by an unidirectional channel to its neighbour as outlined on the right.

To distinguish the processes, each process is assigned a unique identifier $id \in \{1, \dots, n\}$. The aim is to elect the process with the highest identifier as the leader within the ring. Therefore each process executes the following algorithm:

```

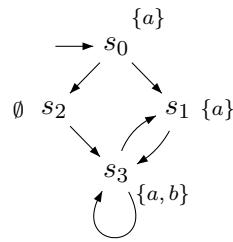
send (id);           initially set to process' id
while (true) do
  receive (m);
  if (m == id) then stop;   process is the leader
  if (m > id) then send (m); forward identifier
od
  
```


- Model the leader election protocol for n processes as a channel system.
- Give an initial execution fragment of $TS([P_1|P_2|P_3])$ such that at least one process has executed the `send`-statement within the body of the `while`-loop.
 Assume for $1 \leq i \leq 3$, that process P_i has identifier $id_i = i$.

Exercise 2

(1 + 1 + 2 points)

Consider a system consisting of n processes P_0, \dots, P_{n-1} and a central moderator M in a fully connected network. Each process P_i (for $0 \leq i < n$) executes the same algorithm and stores a unique identifier $id_i \in \mathbb{N}$. Further, we assume that n is known a priori.


In order to elect a leader, the system is supposed to determine the process with the highest id and communicate it to every process.

- Informally describe how to solve the leader election problem in the above setting.
- Write nanoPromela programs for the algorithm of the process and the moderator. Add comments!
- Formally derive the program graphs for a process and the moderator.

Exercise 3

(1 points)

Consider the transition system given below. Formally define its traces!

Exercise 4

(3 + 2 points)

A bank uses a non-terminating program that monitors the balance (ab) of all its customers' accounts once per week. The account balances of interest are characterized by the set of atomic propositions

$$AP = \{ab < 0, ab = 0, ab > 100\}.$$

a) Express the following informally stated properties as LT-properties:

- an account with positive balance is opened
- the balance is negative only finitely many times
- the balance alternates between debit and credit
- eventually, the account remains with more than 100€ credit
- any debit that occurs is balanced within two weeks
- false and true

b) Determine for each LT-property whether it is a safety property or a liveness property.
Justify your answer!