

Introduction to Model Checking
 Winter term 08/09

– Series 4 –

Hand in on November 21 before the exercise class.

Exercise 1

(3 points)

Let P denote the set of traces of the form $\sigma = A_0 A_1 A_2 \dots \in (2^{AP})^\omega$ such that

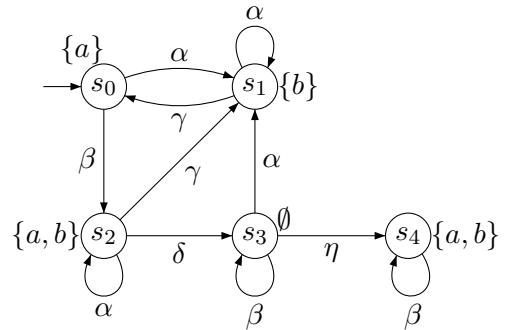
$$\exists k. A_k = \{a, b\} \quad \wedge \quad \exists n \geq 0. \forall k > n. (a \in A_k \Rightarrow b \in A_{k+1}).$$

Consider the following fairness assumptions with respect to the transition system TS outlined on the right:

a) $\mathcal{F}_1 = (\{\{\alpha\}\}, \{\{\beta\}, \{\delta, \gamma\}, \{\eta\}\}, \emptyset)$.
 Decide whether $TS \models_{\mathcal{F}_1} P$.

b) $\mathcal{F}_2 = (\{\{\alpha\}\}, \{\{\beta\}, \{\gamma\}\}, \{\{\eta\}\})$.
 Decide whether $TS \models_{\mathcal{F}_2} P$.

Justify your answers!



Exercise 2

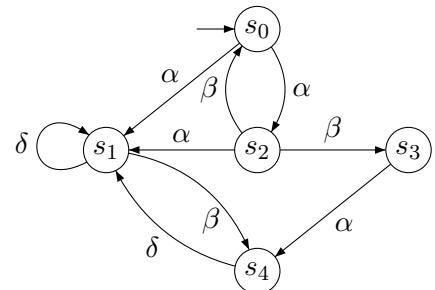
(3 points)

Consider the transition system TS on the right (where atomic propositions are omitted). Decide which of the following fairness assumptions \mathcal{F}_i are realizable for TS . Justify your answers!

a) $\mathcal{F}_1 = (\{\{\alpha\}\}, \{\{\delta\}\}, \{\{\alpha, \beta\}\})$

b) $\mathcal{F}_2 = (\{\{\alpha, \delta\}\}, \{\{\alpha, \beta\}\}, \{\{\delta\}\})$

c) $\mathcal{F}_3 = (\{\{\alpha, \delta\}, \{\beta\}\}, \{\{\alpha, \beta\}\}, \{\{\delta\}\})$



Exercise 3

(1 + 1 points)

Let $n \geq 1$. Consider the language $L_n \subseteq \Sigma^*$ over the alphabet $\Sigma = \{A, B\}$ that consists of all finite words where the symbol B is on position n from the right, i.e., L_n contains exactly the words $A_1 A_2 \dots A_k \in \{A, B\}^*$ where $k \geq n$ and $A_{k-n+1} = B$. For instance, the word $ABBAABAB$ is in L_3 .

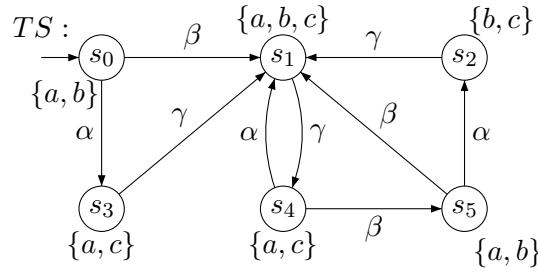
a) Construct an NFA \mathcal{A}_n with at most $n + 1$ states such that $\mathcal{L}(\mathcal{A}_n) = L_n$.

b) Determinize this NFA \mathcal{A}_n using the powerset construction algorithm.

Exercise 4

(2 + 2 points)

Consider the following transition system TS



and the regular safety property

$P_{safe} =$ “always if a is valid and $b \wedge \neg c$ was valid somewhere before,
then a and b do not hold thereafter at least until c holds”

As an example, it holds:

$$\begin{aligned} \{b\} \emptyset \{a, b\} \{a, b, c\} &\in pref(P_{safe}) \\ \{a, b\} \{a, b\} \emptyset \{b, c\} &\in pref(P_{safe}) \\ \{b\} \{a, c\} \{a\} \{a, b, c\} &\in BadPref(P_{safe}) \\ \{b\} \{a, c\} \{a, c\} \{a\} &\in BadPref(P_{safe}) \end{aligned}$$

Questions:

- Define an NFA \mathcal{A} such that $\mathcal{L}(\mathcal{A}) = MinBadPref(P_{safe})$.
- Decide whether $TS \models P_{safe}$ using the $TS \otimes \mathcal{A}$ construction.
Provide a counterexample if $TS \not\models P_{safe}$.