

Introduction to Model Checking
 Winter term 08/09

 Prof. Dr. Ir. J.-P. Katoen
 M. Neuhäuser

– Series 5 –

Hand in on November 28 before the exercise class.

Exercise 1

(4 points)

Let \mathcal{A}_1 and \mathcal{A}_2 be NBA over the same alphabet Σ . Prove (without using GNBAs) that there exists a NBA \mathcal{A} such that

$$\mathcal{L}_\omega(\mathcal{A}) = \mathcal{L}_\omega(\mathcal{A}_1) \cap \mathcal{L}_\omega(\mathcal{A}_2).$$

Exercise 2

(2 + 2 points)

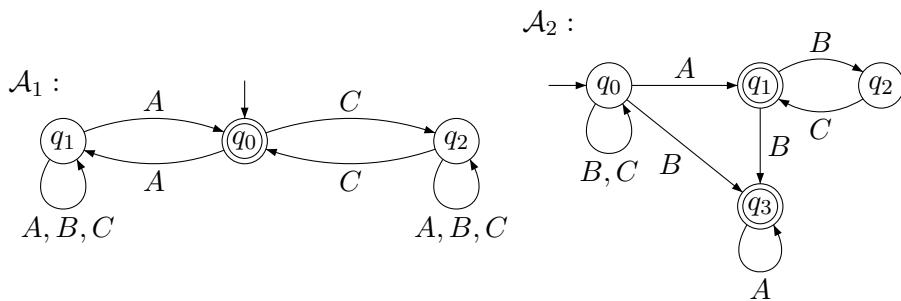
Find nondeterministic Büchi automata that accept the following ω regular languages:

- a) $L_1 = \{\sigma \in \{A, B\}^\omega \mid \sigma \text{ contains } ABA \text{ infinitely often, but } AA \text{ only finitely often}\}$
- b) $L_2 = \mathcal{L}_\omega((AB + C)^*((AA + B)C)^\omega + (A^*C)^\omega)$

Exercise 3

(1 + 2 points)

Consider the following NBA \mathcal{A}_1 and \mathcal{A}_2 over the alphabet $\Sigma = \{A, B, C\}$:



Find ω regular expressions for the languages accepted by \mathcal{A}_1 and \mathcal{A}_2 , respectively.

Exercise 4

(4 points)

Prove or disprove the following equivalences for ω -regular expressions:

- a) $(E_1 + E_2).F^\omega \equiv E_1.F^\omega + E_2.F^\omega$
- b) $E.(F_1 + F_2)^\omega \equiv E.F_1^\omega + E.F_2^\omega$
- c) $E.(F.F^*)^\omega \equiv E.F^\omega$
- d) $(E^*.F)^\omega \equiv E^*.F^\omega$

Here, E, E_1, E_2, F, F_1, F_2 denote regular expressions with $\varepsilon \notin \mathcal{L}(F) \cup \mathcal{L}(F_1) \cup \mathcal{L}(F_2)$.