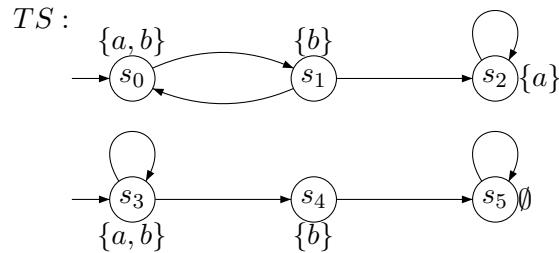


Introduction to Model Checking
 Winter term 08/09


– Series 7 –

Hand in on December 19 before the exercise class.

Exercise 1

(4 points)

Let $AP = \{a, b, c\}$. Consider the transition system TS over AP outlined below

and the LTL fairness assumption $fair = (\Box \Diamond (a \wedge b) \rightarrow \Box \Diamond \neg c) \wedge (\Diamond \Box (a \wedge b) \rightarrow \Box \Diamond \neg b)$.

a) Specify the fair paths of TS !

b) Decide for each of the following LTL formulas φ_i whether it holds $TS \models_{fair} \varphi_i$:

$$\varphi_1 = \bigcirc \neg a \rightarrow \Diamond \Box a \quad \varphi_2 = b \mathsf{U} \Box \neg b \quad \varphi_3 = b \mathsf{W} \Box \neg b.$$

In case $TS \not\models_{fair} \varphi_i$, indicate a path $\pi \in FairPaths(TS)$ for which $\pi \not\models \varphi$ holds.

Exercise 2

(3 points)

For the LTL-formula

$$\varphi = a \wedge \bigcirc (b \mathsf{U} a),$$

give $closure(\varphi)$ and the set of all elementary sets $B \subseteq closure(\varphi)$.

Exercise 3

(2 points)

Let φ be an LTL-formula over a set of atomic propositions AP . Prove the following property:

For all elementary sets $B \subseteq closure(\varphi)$ and for all $B' \in \delta(B, B \cap AP)$, it holds:

$$\neg \bigcirc \psi \in B \iff \psi \notin B'.$$

Exercise 4

(4 points)

Consider the following LTL-formula $\varphi = a \mathsf{U} \bigcirc a$ over the set of atomic propositions $AP = \{a\}$. Construct an equivalent GNBA \mathcal{G} (i.e. $\mathcal{L}_\omega(\mathcal{G}) = Words(\varphi)$) according to the algorithm given in the proof of Theorem 5.37 of the lecture.