

Introduction to Model Checking
 Winter term 08/09

– Series 8 –

Hand in on January 09 before the exercise class.

Exercise 1

(2 + 2 points)

We consider the release operator R which is defined as $\varphi R \psi := \neg(\neg\varphi U \neg\psi)$.

- Informally describe the meaning of the expansion law for the release operator R . Then prove its correctness formally.
- Prove the following two equivalence laws that express R by W and vice versa:

- $\varphi R \psi \equiv (\neg\varphi \wedge \psi) W (\varphi \wedge \psi)$
- $\varphi W \psi \equiv (\neg\varphi \vee \psi) R (\varphi \vee \psi)$

Exercise 2

(0.5 + 1.5 + 2 + 1 + 1 + 2 points)

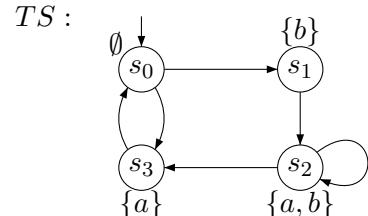
We consider the LTL formula $\varphi = \square(a \rightarrow (\neg b U (a \wedge b)))$ over the set $AP = \{a, b\}$ of atomic propositions and want to check $TS \models \varphi$ wrt. the transition system outlined on the right.

- To check $TS \models \varphi$, convert $\neg\varphi$ into an equivalent LTL-formula ψ which is constructed according to the following grammar:

$$\varphi ::= \text{true} \mid \text{false} \mid a \mid b \mid \varphi \wedge \varphi \mid \neg\varphi \mid \bigcirc\varphi \mid \varphi U \varphi.$$

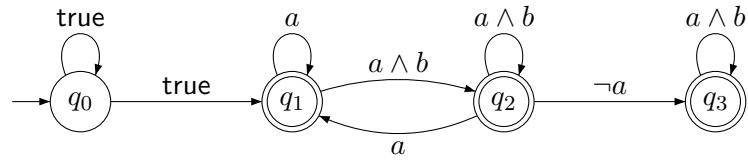
Then construct $\text{closure}(\psi)$.

- Give the elementary sets wrt. $\text{closure}(\psi)$!
- Construct the GNBA \mathcal{G}_ψ by providing its initial states, its acceptance set and its transition relation. Use the algorithm given in the lecture.
Hint: It suffices to provide the transition relation as a table.
- Now, construct an NBA $\mathcal{A}_{\neg\varphi}$ directly from $\neg\varphi$, i.e. without relying on \mathcal{G}_ψ .
Hint: Four states suffice!
- Construct $TS \otimes \mathcal{A}_{\neg\varphi}$.
- Use the Nested DFS algorithm from the lecture to check $TS \models \varphi$. Therefore sketch the algorithm's main steps and interpret its outcome!



Exercise 3**(2 points)**

Consider the GNBA \mathcal{G} over the alphabet $\Sigma = 2^{\{a,b\}}$ and the set $\mathcal{F} = \{\{q_1, q_3\}, \{q_2\}\}$ of acceptance sets:



- Provide an LTL formula φ such that $Word(\varphi) = \mathcal{L}_\omega(\mathcal{G})$. Justify your answer!
- Depict an NBA \mathcal{A} with $\mathcal{L}_\omega(\mathcal{A}) = \mathcal{L}_\omega(\mathcal{G})$.

Merry Christmas and a happy new year!!!

