

CTL Counterexamples and CTL* Model Checking

Lecture #21 of Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

January 14, 2009

Overview Lecture #21

⇒ CTL Counterexamples

- CTL* model checking

Counterexamples

- Model checking is an effective and efficient “bug hunting” technique
- Counterexamples are of utmost importance:
 - diagnostic feedback, the key to abstraction-refinement, schedule synthesis . . .
- LTL: counterexamples are finite paths
 - $\bigcirc\Phi$: a path on which the next state refutes Φ
 - $\Box\Phi$: a path leading to a $\neg\Phi$ -state
 - $\Diamond\Phi$: a $\neg\Phi$ -path leading to a $\neg\Phi$ cycle
- Counterexample generation for LTL:
 - use stack contents of nested DFS on encountering an accept cycle
 - use a variant of BFS top find shortest counterexamples

Counterexamples in CTL

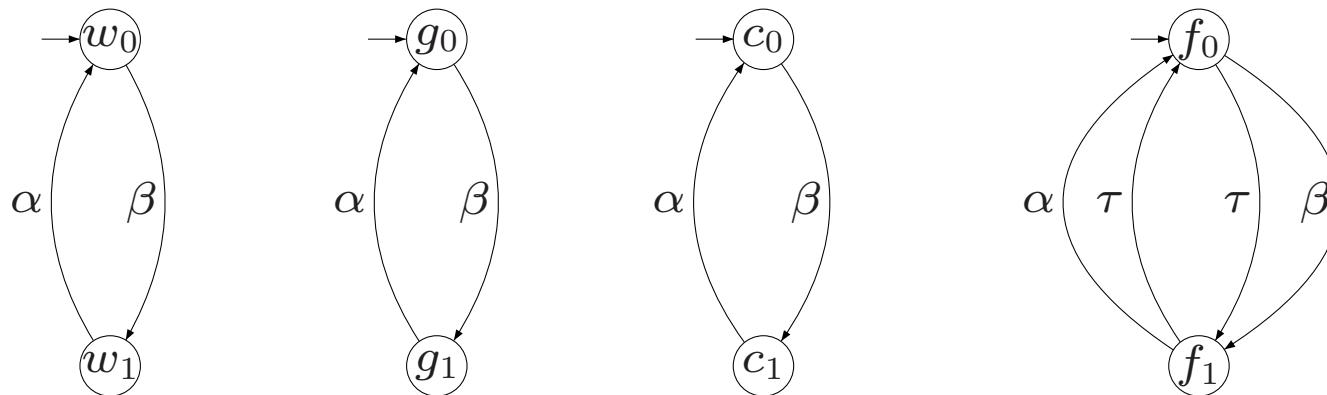
- $TS \not\models \forall \varphi$ where $\forall \varphi$ is also on LTL
 - **counterexample** = a sufficiently long prefix of a path refuting φ (as in LTL)
 - this is a subset of the so-called universal fragment of CTL
- $TS \not\models \exists \varphi$ where φ is arbitrary CTL formula
 - all paths satisfy φ ! \Rightarrow no clear notion of counterexample
 - **witness** = a sufficiently long prefix of a path satisfying φ
- So:
 - for $\forall \varphi$, a prefix of π with $\pi \not\models \varphi$ acts as **counterexample**
 - for $\exists \varphi$, a prefix of π with $\pi \models \varphi$ acts as **witness**

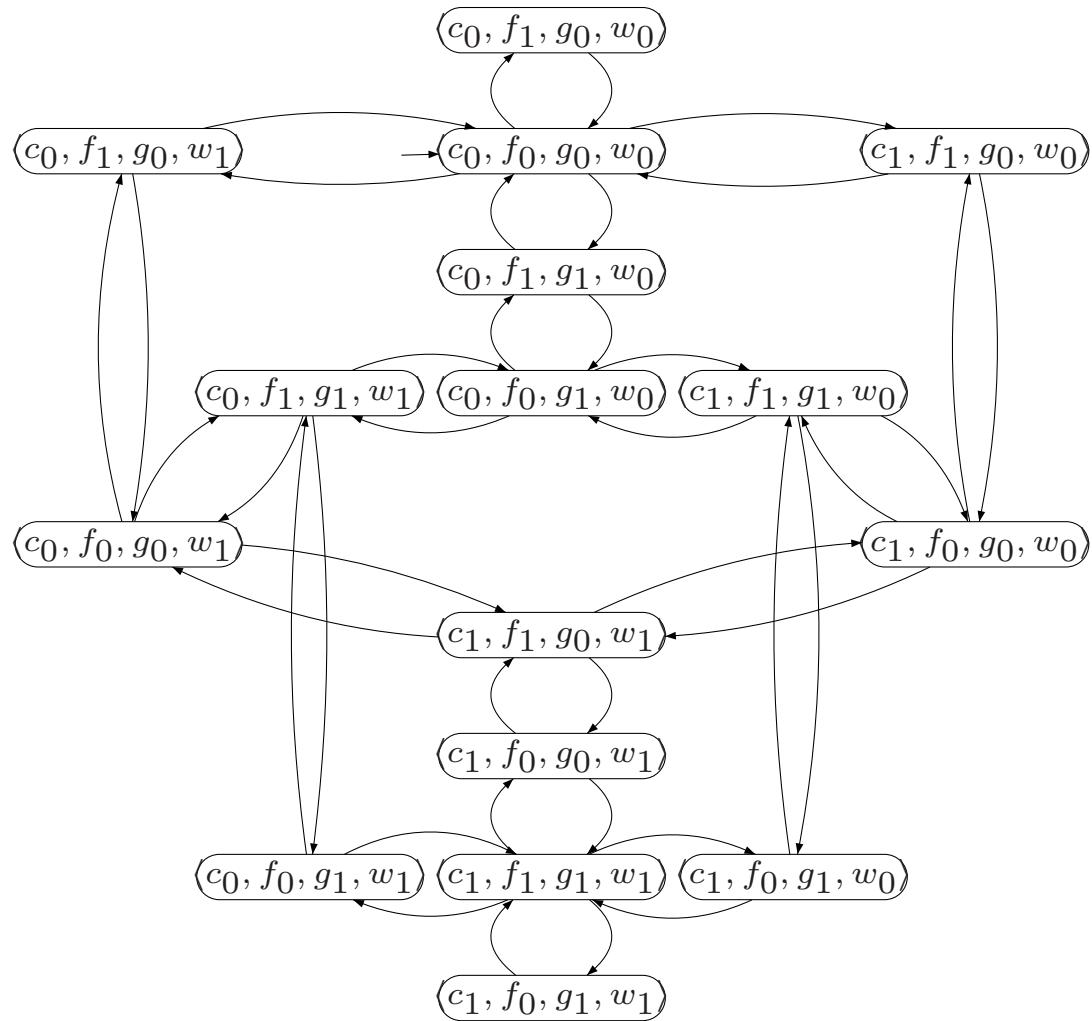
The wolf-goat-cabbage problem

- A goat (g), a cabbage (c) and a wolf (w) and two riverbanks (0 and 1)
 - A boat with ferryman (f) that can carry at most two occupants
 - Only the ferryman can steer the boat
 - Goat and cabbage, goat and wolf should neither travel nor left together
- Is there a schedule such that brings c, g, and w to the other side?
- ... Model this as a CTL model-checking problem
 - transition system $TS = (wolf \parallel\!\!\parallel goat \parallel\!\!\parallel cabbage) \parallel\!\!\parallel ferryman$
 - check whether $TS \models \exists\varphi$ with

$$\varphi = \left(\bigwedge_{i=0,1} (w_i \wedge g_i \rightarrow f_i) \wedge (c_i \wedge g_i \rightarrow f_i) \right) \cup (c_1 \wedge f_1 \wedge g_1 \wedge w_1)$$

The wolf-goat-cabbage problem


$$TS = (wolf \parallel goat \parallel cabbage) \parallel ferryman$$



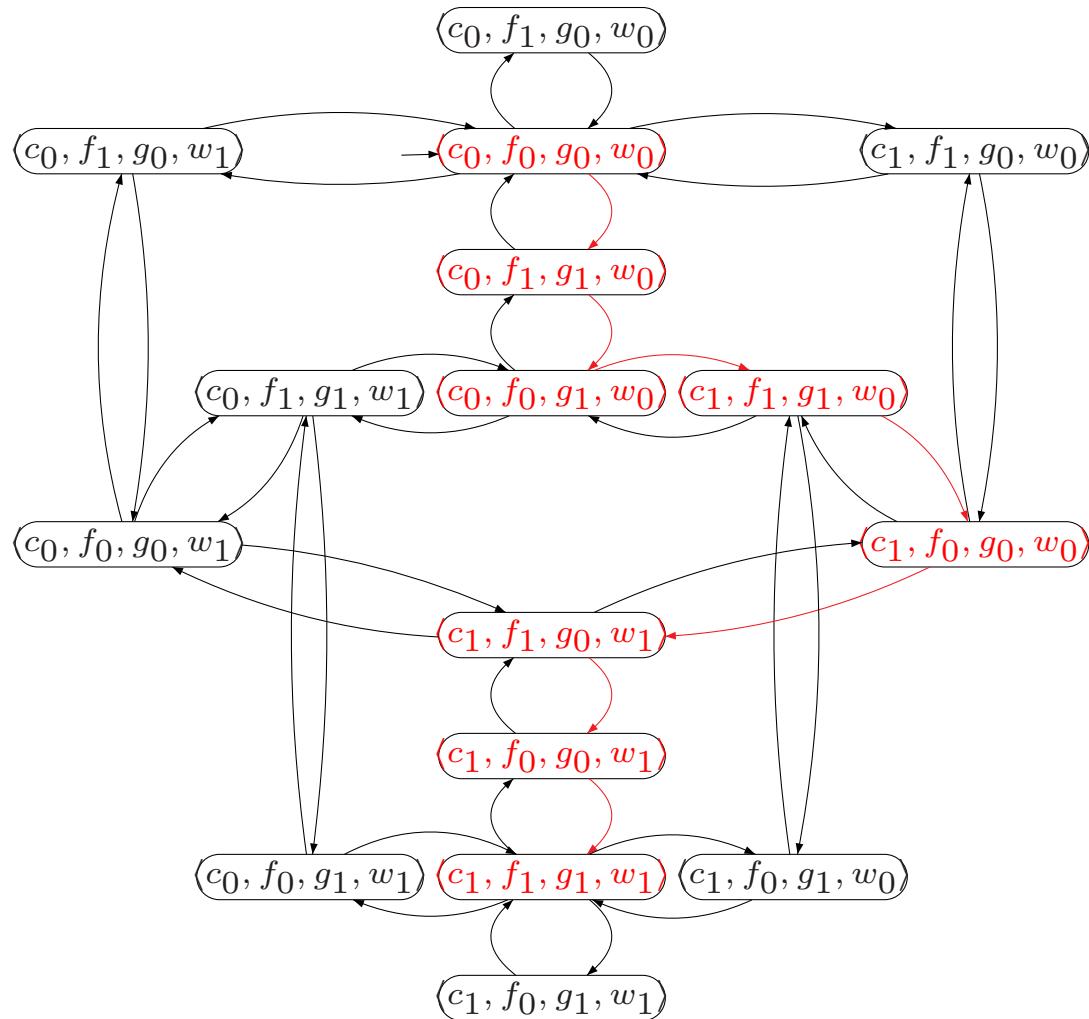
Wolf-goat-cabbage problem

A witness of $\exists\varphi$ with:

$$\varphi = \left(\bigwedge_{i=0,1} (w_i \wedge g_i \rightarrow f_i) \wedge (c_i \wedge g_i \rightarrow f_i) \right) \cup (c_1 \wedge f_1 \wedge g_1 \wedge w_1)$$

is a path fragment from initial state $\langle c_0, f_0, g_0, w_0 \rangle$ to target state $\langle c_1, f_1, g_1, w_1 \rangle$ such that g, c and g, w are not left on a single riverbank. Such as:

$\langle c_0, f_0, g_0, w_0 \rangle$	goat to riverbank 1
$\langle c_0, f_1, g_1, w_0 \rangle$	ferryman comes back to riverbank 0
$\langle c_0, f_0, g_1, w_0 \rangle$	cabbage to riverbank 1
$\langle c_1, f_1, g_1, w_0 \rangle$	goat back to riverbank 0
$\langle c_1, f_0, g_0, w_0 \rangle$	wolf to riverbank 1
$\langle c_1, f_1, g_0, w_1 \rangle$	ferryman comes back to riverbank 0
$\langle c_1, f_0, g_0, w_1 \rangle$	goat to riverbank 1
$\langle c_1, f_1, g_1, w_1 \rangle$	



Counterexamples for $\bigcirc\Phi$

- A counterexample of $\bigcirc\Phi$ is a path fragment $s s'$ with
 - $s \in I$ and $s' \in Post(s)$ with $s' \not\models \Phi$
- A witness of $\bigcirc\Phi$ is a path fragment $s s'$ with
 - $s \in I$ and $s' \in Post(s)$ with $s' \models \Phi$
- **Algorithm:** inspection of direct successors of initial states

Counterexamples for $\Phi \cup \Psi$

- A witness is an initial path fragment $s_0 s_1 \dots s_n$ with
 - $s_n \models \Psi$ and $s_i \models \Phi$ for $0 \leq i < n$
- **Algorithm:** backward search starting in the set of Ψ -states
- A counterexample is an initial path fragment that indicates a path π :
 - for which either $\pi \models \square(\Phi \wedge \neg\Psi)$ **or** $\pi \models (\Phi \wedge \neg\Psi) \cup (\neg\Phi \wedge \neg\Psi)$
- Counterexample is initial path fragment of either form:
 - $s_0 \dots s_{n-1} \underbrace{s_n s'_1 \dots s'_r}_{\text{cycle}}$ with $s_n = s'_r$ **or** $\underbrace{s_0 \dots s_{n-1}}_{\text{satisfy } \Phi \wedge \neg\Psi} s_n$ with $s_n \models \neg\Phi \wedge \neg\Psi$

Counterexample generation

Determine the SCCs by of the **digraph** $G = (S, E)$ where

$$E = \{ (s, s') \in S \times S \mid s' \in \text{Post}(s) \wedge s \models \Phi \wedge \neg \Psi \}$$

Each path in G that starts in an initial state $s_0 \in S$ and leads to a **non-trivial** SCC C in G provides a counterexample of the form:

$$s_0 s_1 \dots s_n \underbrace{s'_1 \dots s'_r}_{\in C} \quad \text{with} \quad s_n = s'_r$$

Each path in G that leads from an initial state s_0 to a **trivial** terminal SCC

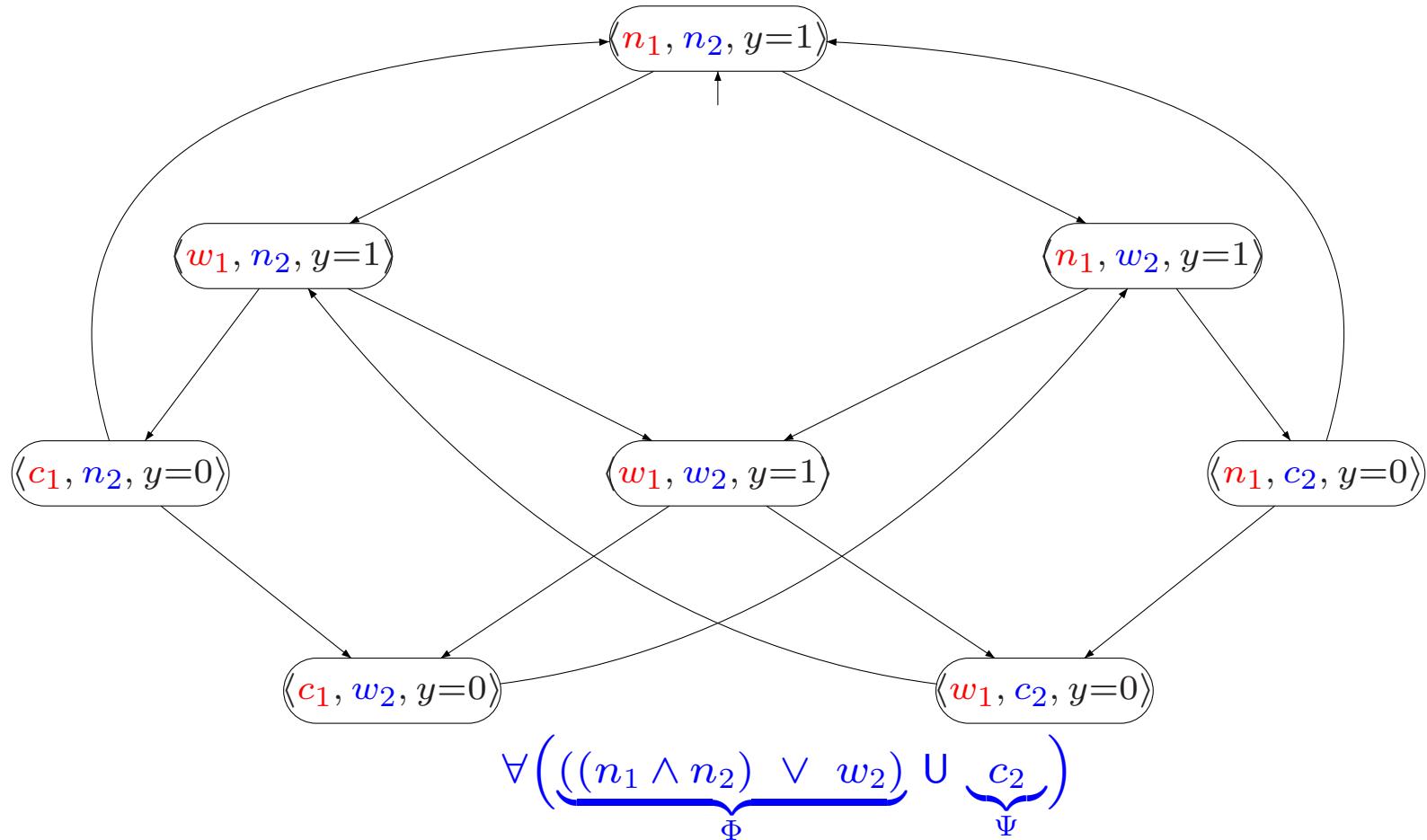
$$C = \{ s' \} \quad \text{with} \quad s' \not\models \Psi$$

provides a counterexample of the form $s_0 s_1 \dots s_n$ with $s_n \models \neg \Phi \wedge \neg \Psi$

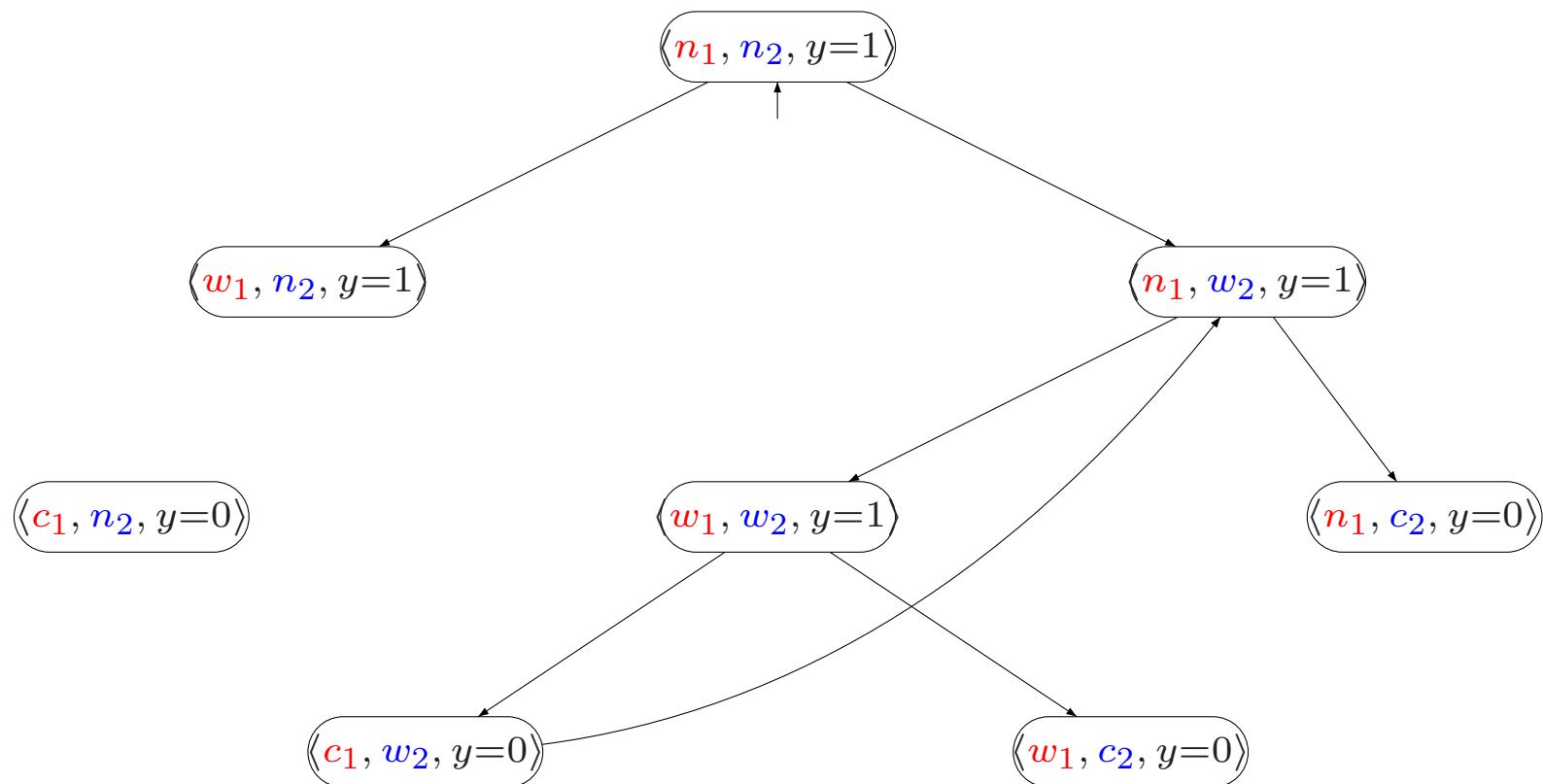
Counterexamples for $\Box\Phi$

- Counterexample is initial path fragment $s_0 s_1 \dots s_n$ such that:
 - $s_0, \dots, s_{n-1} \models \Phi$ and $s_n \not\models \Phi$
- Algorithm: backward search starting in $\neg\Phi$ -states
- A witness of $\varphi = \Box\Phi$ consists of an initial path fragment of the form:
 - $\underbrace{s_0 s_1 \dots s_n s'_1 \dots s'_r}_{\text{satisfy } \Phi} \quad \text{with} \quad s_n = s'_r$
- Algorithm: cycle search in the digraph $G = (S, E)$ where the set of edges E :
 - $E = \{ (s, s') \mid s' \in \text{Post}(s) \wedge s \models \Phi \}$

Example



SCC graph



Time complexity

Let TS be a transition system TS with N states and K transitions and φ a CTL- path formula

If $TS \not\models \forall\varphi$ then a counterexample for φ in TS can be determined in time $\mathcal{O}(N+K)$.

The same holds for a witness for φ , provided that $TS \models \exists\varphi$.

Overview Lecture #21

- CTL Counterexamples

⇒ CTL* model checking

Syntax of CTL*

CTL* *state-formulas* are formed according to:

$$\Phi ::= \text{true} \quad | \quad a \quad | \quad \Phi_1 \wedge \Phi_2 \quad | \quad \neg \Phi \quad | \quad \exists \varphi$$

where $a \in AP$ and φ is a path-formula

CTL* *path-formulas* are formed according to the grammar:

$$\varphi ::= \Phi \quad | \quad \varphi_1 \wedge \varphi_2 \quad | \quad \neg \varphi \quad | \quad \bigcirc \varphi \quad | \quad \varphi_1 \bigcup \varphi_2$$

where Φ is a state-formula, and φ, φ_1 and φ_2 are path-formulas

in CTL*: $\forall \varphi = \neg \exists \neg \varphi$. This does not hold in CTL!

CTL* semantics

$$s \models a \quad \text{iff} \quad a \in L(s)$$

$$s \models \neg \Phi \quad \text{iff} \quad \text{not } s \models \Phi$$

$$s \models \Phi \wedge \Psi \quad \text{iff} \quad (s \models \Phi) \text{ and } (s \models \Psi)$$

$$s \models \exists \varphi \quad \text{iff} \quad \pi \models \varphi \text{ for some } \pi \in \text{Paths}(s)$$

$$\pi \models \Phi \quad \text{iff} \quad \pi[0] \models \Phi$$

$$\pi \models \varphi_1 \wedge \varphi_2 \quad \text{iff} \quad \pi \models \varphi_1 \text{ and } \pi \models \varphi_2$$

$$\pi \models \neg \varphi \quad \text{iff} \quad \pi \not\models \varphi$$

$$\pi \models \bigcirc \varphi \quad \text{iff} \quad \pi[1..] \models \varphi$$

$$\pi \models \varphi_1 \mathbin{\text{\texttt{U}}} \varphi_2 \quad \text{iff} \quad \exists j \geq 0. (\pi[j..] \models \varphi_2 \wedge (\forall 0 \leq k < j. \pi[k..] \models \varphi_1))$$

Transition system semantics

- For CTL*-state-formula Φ , the *satisfaction set* $\text{Sat}(\Phi)$ is defined by:

$$\text{Sat}(\Phi) = \{ s \in S \mid s \models \Phi \}$$

- TS satisfies CTL*-formula Φ iff Φ holds in all its initial states:

$$TS \models \Phi \text{ if and only if } \forall s_0 \in I. s_0 \models \Phi$$

this is exactly as for CTL

Embedding of LTL in CTL*

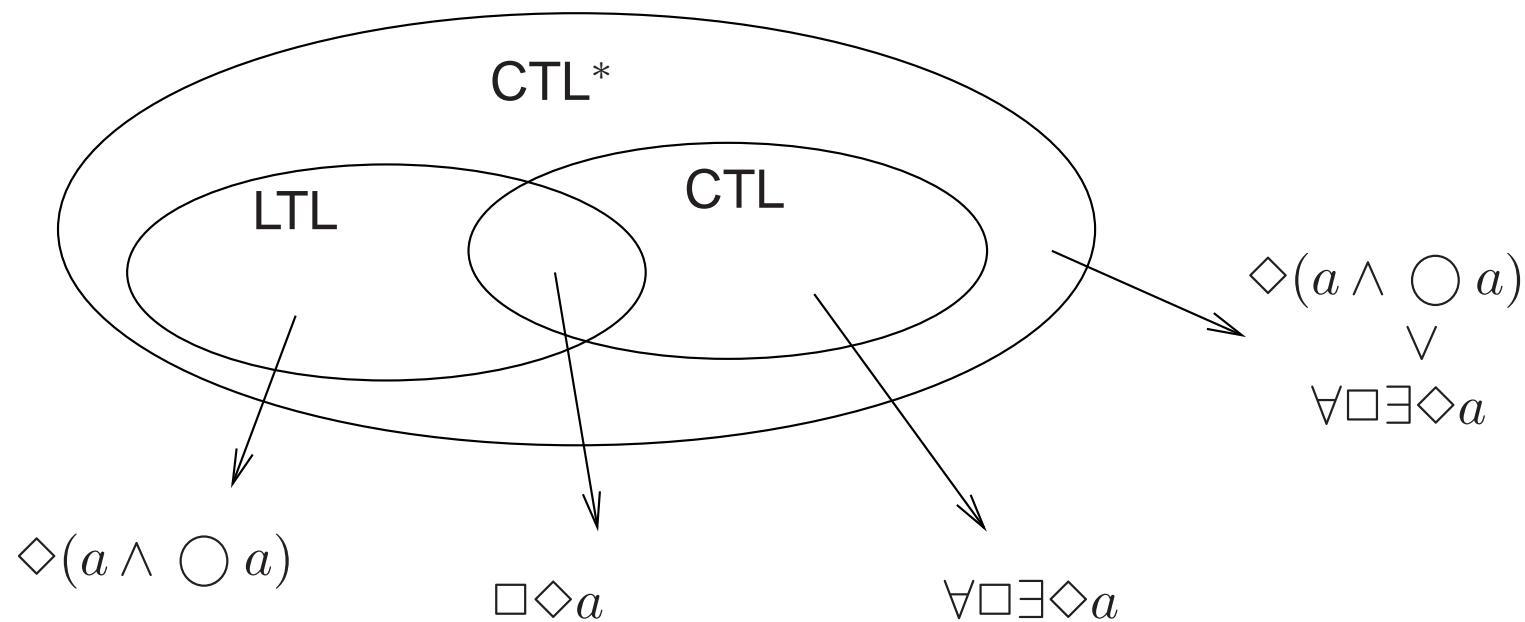
For LTL formula φ and TS without terminal states (both over AP) and for each $s \in S$:

$$\underbrace{s \models \varphi}_{\text{LTL semantics}} \quad \text{if and only if} \quad \underbrace{s \models \forall \varphi}_{\text{CTL* semantics}}$$

In particular:

$$TS \models_{LTL} \varphi \quad \text{if and only if} \quad TS \models_{CTL*} \forall \varphi$$

Expressivity of CTL*



CTL* model checking

[Emerson & Lei, 1985]

- Adopt the same bottom-up procedure as for CTL
- Replace *maximal proper state sub-formula* Ψ by new proposition a_Ψ
 - adjust labeling such that $a_\Psi \in L(s)$ if and only if $s \in \text{Sat}(\Psi)$
- In the end, this yields an LTL formula!
- Most interesting case: formulas of the form $\exists\varphi$

$$s \models \exists\varphi \text{ iff } \underbrace{s \not\models \forall \neg\varphi}_{\text{CTL* semantics}} \text{ iff } \underbrace{s \not\models \neg\varphi}_{\text{LTL semantics}}$$

- $\text{Sat}_{\text{CTL}^*}(\exists\varphi) = S \setminus \text{Sat}_{\text{LTL}}(\neg\varphi) = S \setminus \{s \in S \mid s \models_{\text{LTL}} \neg\varphi\}$

Abstract example

CTL* model-checking algorithm

```

for all  $i \leqslant |\Phi|$  do
  for all  $\Psi \in Sub(\Phi)$  with  $|\Psi| = i$  do
    switch( $\Psi$ ):
      true :  $Sat(\Psi) := S;$ 
       $a$  :  $Sat(\Psi) := \{ s \in S \mid a \in L(s) \};$ 
       $a_1 \wedge a_2$  :  $Sat(\Psi) := Sat(a_1) \cap Sat(a_2);$ 
       $\neg a$  :  $Sat(\Psi) := S \setminus Sat(a);$ 
       $\exists \varphi$  : determine  $Sat_{LTL}(\neg \varphi);$ 
      :  $Sat(\Psi) := S \setminus Sat_{LTL}(\neg \varphi)$ 
    end switch
     $AP := AP \cup \{ a_\Psi \};$  (* introduce fresh atomic proposition *)
    replace  $\Psi$  with  $a_\Psi$ ;
    forall  $s \in Sat(\Psi)$  do  $L(s) := L(s) \cup \{ a_\Psi \}$ ; od
  od
od
return  $I \subseteq Sat(\Phi)$ 

```

Example

Time complexity

For transition system TS with N states and M transitions, CTL* formula Φ , the CTL* model-checking problem $TS \models \Phi$ can be determined in time $\mathcal{O}((N+M) \cdot 2^{|\Phi|})$.

The CTL* model-checking problem is PSPACE-complete

Complexity overview

	CTL	LTL	CTL*
model checking without fairness	PTIME $\text{size}(TS) \cdot \Phi $	PSPACE-complete $\text{size}(TS) \cdot \exp(\Phi)$	PSPACE-complete $\text{size}(TS) \cdot \exp(\Phi)$
satisfiability check best known technique	EXPTIME $\exp(\Phi)$	PSPACE-complete $\exp(\Phi)$	2EXPTIME $\exp(\exp(\Phi))$