© JPK

CTL Counterexamples

and CTL * Model Checking
Lecture #21 of Model Checking

Joost-Pieter Katoen
Lehrstuhl 2: Software Modeling & Verification

E-mail: kat oen@s. r wt h- aachen. de

January 14, 2009

#21: CTL Counterexamples and CTL * Model Checking Model checking

Overview Lecture #21

= CTL Counterexamples

e CTL* model checking

© JPK

#21: CTL Counterexamples and CTL * Model Checking Model checking

Counterexamples

e Model checking is an effective and efficient “bug hunting” technique

e Counterexamples are of utmost importance:

— diagnostic feedback, the key to abstraction-refinement, schedule synthesis . . .

e LTL: counterexamples are finite paths

— (O®: a path on which the next state refutes
— O&: a path leading to a —®-state
— &P a ~P-path leading to a —P cycle

e Counterexample generation for LTL:

— use stack contents of nested DFS on encountering an accept cycle
— use a variant of BFS top find shortest counterexamples

© JPK

#21: CTL Counterexamples and CTL * Model Checking Model checking

Counterexamples in CTL

e TS £V where Vo is also on LTL

— counterexample = a sufficiently long prefix of a path refuting ¢ (as in LTL)
— this is a subset of the so-called universal fragment of CTL

e TS [~ dy where ¢ is arbitrary CTL formula

— all paths satisfy ¢! = no clear notion of counterexample
— witness = a sufficiently long prefix of a path satisfying ¢

e SO:

— for V¢, a prefix of 7 with 7 [~ ¢ acts as counterexample
— for J¢, a prefix of 7 with 7w |= ¢ acts as witness

© JPK

#21: CTL Counterexamples and CTL * Model Checking Model checking

The wolf-goat-cabbage problem

e A goat (g), a cabbage (c) and a wolf (w) and two riverbanks (0 and 1)

— A boat with ferryman (f) that can carry at most two occupants
— Only the ferryman can steer the boat
— Goat and cabbage, goat and wolf should neither travel nor left together

e |Is there a schedule such that brings c, g, and w to the other side?

e ... Model this as a CTL model-checking problem

— transition system TS = (wolf ||| goat ||| cabbage) || ferryman
— check whether TS = J¢ with

o = (/\ (wiNgi = fi) A (ci/\gz-—>f7;)> U (e A fiAgr Aws)

i=0,1

© JPK 4

#21: CTL Counterexamples and CTL * Model Checking Model checking

The wolf-goat-cabbage problem

TS = (wolf ||| goat ||| cabbage) || ferryman

© JPK

#21: CTL Counterexamples and CTL * Model Checking Model checking

co» f1, 90, wo

@o,fpgo,wﬂ

(c0» f15 91, wo)
cos 1,91, w1 (Co Jo> gl,w@(1 f1,91,w0)

co, J0r 90> w1

c1, f0, 90, w1

(c0» f0, 91, w1) (c1, f1, 91, w1) {c1, o, 91, wo)
Y

(c1, fo,91,w1)

© JPK

#21: CTL Counterexamples and CTL * Model Checking Model checking

Wolf-goat-cabbage problem

A witness of Jy with:

p = (/\ (wi A gi — fi) A (Ci/\gi_>fi)> U (1 A fiAgi Aws)

i=0,1

is a path fragment from initial state (cq, fo, go, wo) to target state {c1, f1, g1, w1) such
that g, c and g, w are not left on a single riverbank. Such as:

goat to riverbank 1

ferryman comes back to riverbank O
{co, fo, g1, wp) cabbage to riverbank 1

(c1, f1, 91, wp) goat back to riverbank 0

<007 fo, 90, ’w0>
)
)
)
{c1, fo, g0, wo) Wwolf to riverbank 1
)
)
)

<CO7 f17 g1, Wo

(c1, f1, 90, w1) ferryman comes back to riverbank O
{(c1, fo, g0, w1) goat to riverbank 1
<Cla f17 gi, Wi

© JPK 7

#21: CTL Counterexamples and CTL * Model Checking Model checking

co» f1, 90, wo

(Co,fpgo,wﬂ

(c0s 1, 91> wo)
<o fo 91#@@1 1, 91aw(D

c1, fo, 90, w1

(0> fo, 91, w1) (1, f1, 91, w1) (e1, fo, 91, wo)
Y

(c1, fo,91,w1)

© JPK

#21: CTL Counterexamples and CTL * Model Checking Model checking

Counterexamples for (O®

e A counterexample of ()@ is a path fragment s s’ with

— s € I and s’ € Post(s) with s" £ ®

e A witness of ()@ is a is a path fragment s s’ with

— s € I and s’ € Post(s) with s" = ®

e Algorithm: inspection of direct successors of initial states

© JPK

#21: CTL Counterexamples and CTL * Model Checking Model checking

Counterexamples for ®U W

e A witness is an initial path fragment sy sq .. . s,, With

— s, =¥ and s;E=®for0<i<n
e Algorithm: backward search starting in the set of W-states

e A counterexample is an initial path fragment that indicates a path

— for which eitherm = 0(®A-V) or m = (PA-P)U (=D A D)

e Counterexample is initial path fragment of either form:

/ /
— 80...Sn_1§n81...8T

J

with s,=s’. or 80---8n—1 Sp With s, = —® A v

c;?gle satisfyg A=W

\ J

satisfy‘CI; Al

© JPK 10

#21: CTL Counterexamples and CTL * Model Checking Model checking

Counterexample generation
Determine the SCCs by of the digraph G = (S, F') where

E = {(s,s) e SxS|s ePost(s) N sEPA-T}

Each path in G that starts in an initial state s, € S and leads to a non-
trivial SCC C' in G provides a counterexample of the form:

S081...8,87...5. with s,=s
——
cC
Each path in G that leads from an initial state s, to a trivial terminal SCC
C={s} with §FEU

provides a counterexample of the form sg sq ... s, with s,, = ~® A =0

© JPK 11

#21: CTL Counterexamples and CTL * Model Checking Model checking

Counterexamples for O®

e Counterexample is initial path fragment sg s1 ... s, such that:

— S0y---,8,-1 = ®and s, [~ P
e Algorithm: backward search starting in —®-states

e A witness of ¢ = O® consists of an initial path fragment of the form:

/
D

/ . /
— 8081...8,8;...8,. With s, = s
o

satigfy ®

e Algorithm: cycle search in the digraph G = (S, F) where the set of
edges L.

-~ E = {(s,s8") | s €Post(s) AN s=d}

© JPK 12

#21: CTL Counterexamples and CTL * Model Checking Model checking

Example

<Cla na, y:O> <n17 C2, y:O>

‘v’(g(nl /\ni) vV ows) U ¢ /)

2
~~
) g

© JPK 13

#21: CTL Counterexamples and CTL * Model Checking

Model checking

SCC graph

(c1,n2,y=0)

{

ni, cz, y=0)

© JPK

14

#21: CTL Counterexamples and CTL * Model Checking Model checking

Time complexity

Let TS be a transition system TS with /V states and K transitions and ¢
a CTL- path formula

If TS = Vi then a counterexample for ¢ in TS can be determined in
time O(N+K).

The same holds for a witness for ¢, provided that TS = Je.

© JPK 15

#21: CTL Counterexamples and CTL * Model Checking

Model checking

Overview Lecture #21

e CTL Counterexamples

= CTL* model checking

© JPK

16

#21: CTL Counterexamples and CTL * Model Checking Model checking

Syntax of CTL *

CTL" state-formulas are formed according to:
® ::=true ‘ a ‘ D N Dy | P | dp

where a € AP and ¢ is a path-formula

CTL" path-formulas are formed according to the grammar:

p = ‘ ©1 N\ P2 ‘ P ‘ Qg ‘ ©1 U o

where @ is a state-formula, and ¢, ¢, and ¢, are path-formulas

in CTL": Vo = —3—¢. This does not hold in CTL!

© JPK 17

#21: CTL Counterexamples and CTL * Model Checking

Model checking

T = P

T = 1 A p2
T = e

T = Ogp
™ = w1 U

skE=a

CTL* semantics

iff a €& L(s)

skE @ iff nots =&
sEPAVY iff (skE=®)and (s = V)

s = o

Iff
lii
Iff
Iff
Iff

iff 7 |= ¢ forsome w € Paths(s)

7[0] = @

T = and T = o

T e
m[l..] =
35>0. (r[j.] =2 A (VO k< j.w[k..] = ¢1))

© JPK

18

#21: CTL Counterexamples and CTL * Model Checking Model checking

Transition system semantics

e For CTL*-state-formula ®, the satisfaction set Sat(®) is defined by:

Sat(®) = {seS|sE=?}

e TS satisfies CTL*-formula & iff & holds in all its initial states:

TS=® ifandonlyif Vsygel.sqg=®

this is exactly as for CTL

© JPK 19

#21: CTL Counterexamples and CTL * Model Checking Model checking

Embedding of LTL in CTL ~

For LTL formula ¢ and TS without terminal states (both over AP) and for
each s € S

= If and only if s =V
= 2 y = Vo
LTL semantics CTL™ semantics

In particular:

TS =1 e ifandonlyif TS Eerpe Vo

© JPK 20

#21: CTL Counterexamples and CTL * Model Checking

Model checking

Expressivity of CTL

*

YOd<$a

SlaN Oa)

YOd<Ca

© JPK

21

#21: CTL Counterexamples and CTL * Model Checking Model checking

CTL* model checking

[Emerson & Lei, 1985]

e Adopt the same bottom-up procedure as for CTL

e Replace maximal proper state sub-formula ¥ by new proposition ay
— adjust labeling such that ag € L(s) ifand only if s € Sat(W)

e In the end, this yields an LTL formula!

e Most interesting case: formulas of the form dp

s F Jdp iff s E Ve 0t s E e

\

CTL" sgmantics LTL semantics

— Sater«(Fp) = S\ Satpr(—p) = S\{s€S|s =i ¢}

© JPK 22

#21: CTL Counterexamples and CTL * Model Checking

Model checking

Abstract example

© JPK

23

#21: CTL Counterexamples and CTL * Model Checking Model checking

CTL* model-checking algorithm

forall + < |®|do
forall W € Sub(®) with | ¥ | = i do

switch (W):
true . Sat(V) = S
a . Sat(V):={seS|ae€L(s)};
a1 Nay . Sat(¥) := Sat(a;) N Sat(az);
—a . Sat(V) := S\ Sat(a);
Jp . determine Sat;r(—p);
: Sat(\If) =S \ SatLTL(_lQD)
end switch
AP := AP U {ay }; (* introduce fresh atomic proposition *)

replace ¥ with ay;
forall s € Sat(¥) do L(s) := L(s) U {ay };0d
od
od
return I C Sat(®P)

© JPK 24

#21: CTL Counterexamples and CTL * Model Checking

Model checking

Example

© JPK

25

#21: CTL Counterexamples and CTL * Model Checking

Model checking

Time complexity

For transition system TS with IV states and M transitions,
CTL" formula &, the CTL" model-checking problem TS = &
can be determined in time O((N+M)-2!®1).

The CTL" model-checking problem is PSPACE-complete

© JPK

26

#21: CTL Counterexamples and CTL * Model Checking

Model checking

Complexity overview

CTL LTL CTL*
model checking PTIME PSPACE-complete PSPACE-complete
without fairness size(TS) - |®| | size(TS) - exp(|P|) | size(TS) - exp(|P|)
satisfiability check EXPTIME PSPACE-complete 2EXPTIME
best known technique exp(|®|) exp(|®|) exp(exp(|P]))

© JPK

27

