

Fairness in CTL

Lecture #22 of Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

January 20, 2009

What did we treat so far?

- CTL semantics: for states, paths and transition systems
- CTL equivalence: e.g., expansion laws
- Existential normal form
- Expressivity of CTL versus LTL
- CTL model checking
- CTL*: extended CTL—expressivity and model checking

what about fairness in CTL?

Overview Lecture #22

⇒ Repetition: fairness in LTL

- Fair semantics for CTL
- CTL model checking with fairness
- Time complexity
- Summary of CTL model checking

Summary of action-based fairness

- *Fairness constraints* rule out unrealistic executions
 - by putting constraints on the **actions** that occur along infinite executions
- Unconditional, strong, and weak fairness constraints
 - unconditional \Rightarrow strong fair \Rightarrow weak fair
 - weak fairness rules out the least number of runs; unconditional the most
- *Fairness assumptions* allow distinct constraints on distinct action sets
- (Realizable) fairness assumptions are irrelevant for safety properties
 - important for the verification of liveness properties

LTL fairness constraints

Let Φ and Ψ be propositional logic formulas over AP .

1. An *unconditional LTL fairness constraint* is of the form:

$$ufair = \square \diamond \Psi$$

2. A *strong LTL fairness condition* is of the form:

$$sfair = \square \diamond \Phi \longrightarrow \square \diamond \Psi$$

3. A *weak LTL fairness constraint* is of the form:

$$wfair = \diamond \square \Phi \longrightarrow \square \diamond \Psi$$

Φ stands for “something is enabled”; Ψ for “something is taken”

LTL fairness assumption

- *LTL fairness assumption* = conjunction of LTL fairness constraints
 - the fairness constraints are of any arbitrary type
- Strong fairness assumption: $sfair = \bigwedge_{0 < i \leq k} (\Box \lozenge \Phi_i \longrightarrow \Box \lozenge \Psi_i)$
- General format: $fair = ufair \wedge sfair \wedge wfair$
- Rules of thumb:
 - strong (or unconditional) fairness assumptions are useful for solving contentions
 - weak fairness suffices for resolving nondeterminism resulting from interleaving

Fair satisfaction

For state s in transition system TS (over AP) without terminal states, let

$$\mathcal{F}airPaths_{fair}(s) = \{ \pi \in \mathcal{P}aths(s) \mid \pi \models_{fair} \varphi \}$$

$$\mathcal{F}airTraces_{fair}(s) = \{ \text{trace}(\pi) \mid \pi \in \mathcal{F}airPaths_{fair}(s) \}$$

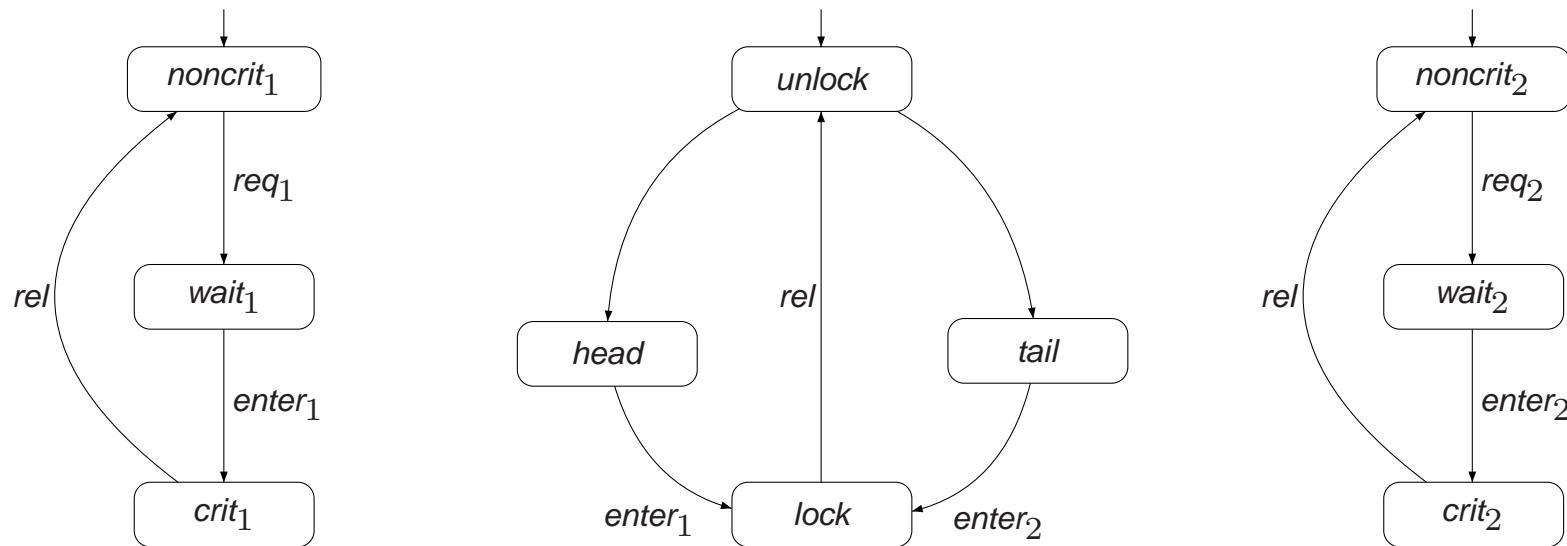
For LTL-formula φ , and LTL fairness assumption $fair$:

$$s \models_{fair} \varphi \text{ if and only if } \forall \pi \in \mathcal{F}airPaths_{fair}(s). \pi \models \varphi \text{ and}$$

$$TS \models_{fair} \varphi \text{ if and only if } \forall s_0 \in I. s_0 \models_{fair} \varphi$$

\models_{fair} is the *fair satisfaction relation* for LTL; \models the standard one for LTL

Randomized arbiter



$$TS_1 \parallel \text{Arbiter} \parallel TS_2 \not\models \Box \Diamond crit_1$$

But: $TS_1 \parallel \text{Arbiter} \parallel TS_2 \models_{\text{fair}} \Box \Diamond crit_1 \wedge \Box \Diamond crit_2$ with *fair* = $\Box \Diamond head \wedge \Box \Diamond tail$

Reducing \models_{fair} to \models

For:

- transition system TS without terminal states
- LTL formula φ , and
- LTL fairness assumption $fair$

it holds:

$$TS \models_{fair} \varphi \quad \text{if and only if} \quad TS \models (fair \rightarrow \varphi)$$

verifying an LTL-formula under a fairness assumption can be done
using standard LTL model-checking algorithms

Overview Lecture #22

- Repetition: fairness in LTL

⇒ Fair semantics for CTL

- CTL model checking with fairness
- Time complexity
- Summary of CTL model checking

Fairness constraints in CTL

- For LTL it holds: $TS \models_{fair} \varphi$ if and only if $TS \models (fair \rightarrow \varphi)$
- An analogous approach for CTL is **not** possible!
- Formulas form $\forall(fair \rightarrow \varphi)$ and $\exists(fair \wedge \varphi)$ needed
- **But:** boolean combinations of path formulae are not allowed in CTL
- **and:** e.g., strong fairness constraints $\square\lozenge b \rightarrow \square\lozenge c \equiv \lozenge\square\neg b \vee \lozenge\square c$
 - cannot be expressed in CTL since persistence properties are not in CTL
- Solution: change the semantics of CTL by ignoring unfair paths

CTL fairness constraints

- A *strong* CTL fairness constraint is a formula of the form:

$$sfair = \bigwedge_{0 < i \leq k} (\square \diamond \Phi_i \rightarrow \square \diamond \Psi_i)$$

- where Φ_i and Ψ_i (for $0 < i \leq k$) are CTL-formulas over AP
- weak and unconditional CTL fairness constraints are defined analogously, e.g.

$$ufair = \bigwedge_{0 < i \leq k} \square \diamond \Psi_i \quad \text{and} \quad wfair = \bigwedge_{0 < i \leq k} (\diamond \square \Phi_i \rightarrow \square \diamond \Psi_i)$$

- a CTL fairness assumption $fair$ is a combination of $ufair$, $sfair$ and $wfair$

⇒ a CTL fairness constraint is an LTL formula over CTL state formulas!

- note that $s \models \Phi_i$ and $s \models \Psi_i$ refer to standard (unfair!) CTL semantics

Semantics of fair CTL

For CTL fairness assumption $fair$, relation \models_{fair} is defined by:

$$s \models_{fair} a \quad \text{iff} \quad a \in Label(s)$$

$$s \models_{fair} \neg \Phi \quad \text{iff} \quad \neg (s \models_{fair} \Phi)$$

$$s \models_{fair} \Phi \vee \Psi \quad \text{iff} \quad (s \models_{fair} \Phi) \vee (s \models_{fair} \Psi)$$

$$s \models_{fair} \exists \varphi \quad \text{iff} \quad \pi \models_{fair} \varphi \text{ for some fair path } \pi \text{ that starts in } s$$

$$s \models_{fair} \forall \varphi \quad \text{iff} \quad \pi \models_{fair} \varphi \text{ for all fair paths } \pi \text{ that start in } s$$

$$\pi \models_{fair} \bigcirc \Phi \quad \text{iff} \quad \pi[1] \models_{fair} \Phi$$

$$\pi \models_{fair} \Phi \cup \Psi \quad \text{iff} \quad (\exists j \geq 0. \pi[j] \models_{fair} \Psi) \wedge (\forall 0 \leq k < j. \pi[k] \models_{fair} \Phi))$$

π is a fair path iff $\pi \models_{LTL} fair$ for CTL fairness assumption $fair$

Transition system semantics

- For CTL-state-formula Φ , and fairness assumption $fair$, the *satisfaction set* $Sat_{fair}(\Phi)$ is defined by:

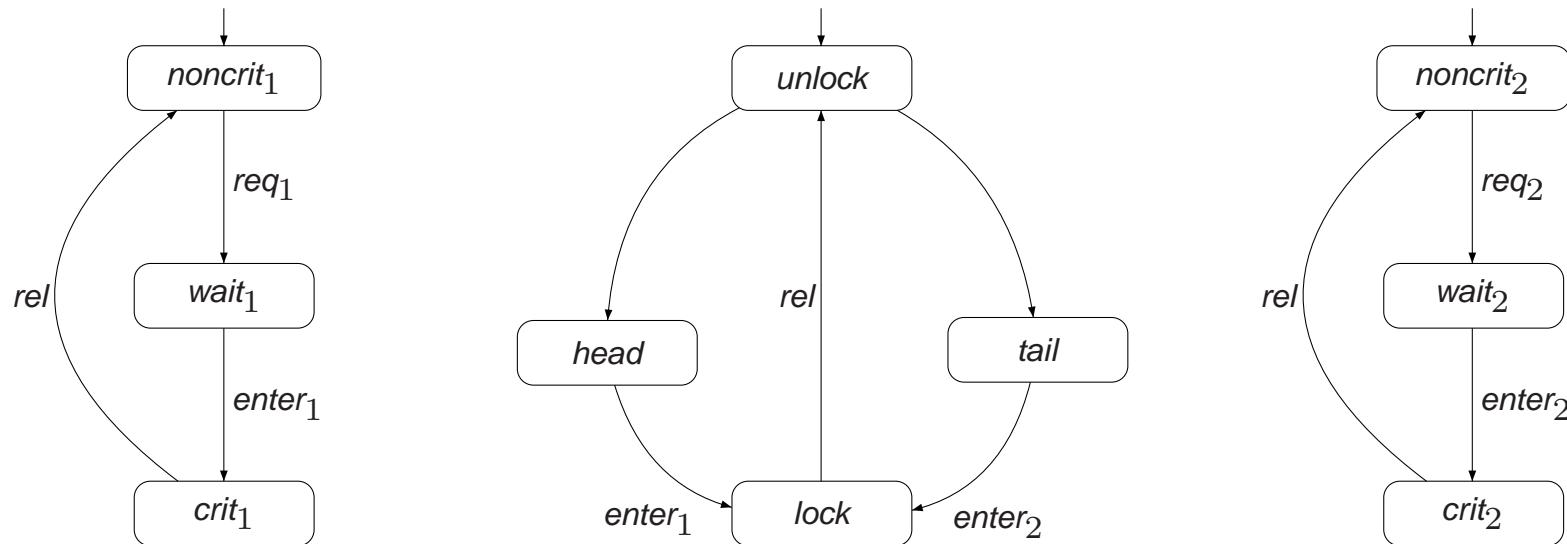
$$Sat_{fair}(\Phi) = \{ s \in S \mid s \models_{fair} \Phi \}$$

- TS satisfies CTL-formula Φ iff Φ holds in all its initial states:

$$TS \models_{fair} \Phi \text{ if and only if } \forall s_0 \in I. s_0 \models_{fair} \Phi$$

- this is equivalent to $I \subseteq Sat_{fair}(\Phi)$

Randomized arbiter



$TS_1 \parallel \text{Arbiter} \parallel TS_2 \not\models (\forall \Box \forall \Diamond crit_1) \wedge (\forall \Box \forall \Diamond crit_2)$

But: $TS_1 \parallel \text{Arbiter} \parallel TS_2 \models_{\text{fair}} \forall \Box \forall \Diamond crit_1 \wedge \forall \Box \forall \Diamond crit_2$ with
 $\text{fair} = \Box \Diamond head \wedge \Box \Diamond tail$

Overview Lecture #22

- Repetition: fairness in LTL
- Fair semantics for CTL

⇒ CTL model checking with fairness

- Time complexity
- Summary of CTL model checking

Fair CTL model-checking problem

For:

- finite transition system TS without terminal states
- CTL formula Φ in ENF, and
- CTL fairness assumption $fair$

establish whether or not:

$$TS \models_{fair} \Phi$$

use bottom-up procedure à la CTL to determine $Sat_{fair}(\Phi)$
using as much as possible standard CTL model-checking algorithms

CTL fairness constraints

- A *strong CTL fairness constraint*: $sfair = \bigwedge_{0 < i \leq k} (\square \diamond \Phi_i \rightarrow \square \diamond \Psi_i)$
 - where Φ_i and Ψ_i (for $0 < i \leq k$) are CTL-formulas over AP
- Replace the CTL state-formulas in $sfair$ by fresh atomic propositions:

$$sfair := \bigwedge_{0 < i \leq k} (\square \diamond a_i \rightarrow \square \diamond b_i)$$

- where $a_i \in L(s)$ if and only if $s \in \text{Sat}(\Phi_i)$ (not $\text{Sat}_{fair}(\Phi_i)!!$)
- $\dots b_i \in L(s)$ if and only if $s \in \text{Sat}(\Psi_i)$ (not $\text{Sat}_{fair}(\Psi_i)!!$)
- (for unconditional and weak fairness this goes similarly)

- Note: $\pi \models \text{fair}$ iff $\pi[j..] \models \text{fair}$ for some $j \geq 0$ iff $\pi[j..] \models \text{fair}$ for all $j \geq 0$

Results for $\models_{fair} (1)$

$s \models_{fair} \exists \bigcirc a$ if and only if $\exists s' \in Post(s)$ with $s' \models a$ and $FairPaths(s') \neq \emptyset$

$s \models_{fair} \exists(a \cup a')$ if and only if there exists a finite path fragment

$$s_0 s_1 s_2 \dots s_{n-1} s_n \in Paths_{fin}(s) \quad \text{with } n \geq 0$$

such that $s_i \models a$ for $0 \leq i < n$, $s_n \models a'$, and $FairPaths(s_n) \neq \emptyset$

Results for \models_{fair} (2)

$s \models_{fair} \exists \bigcirc a$ if and only if $\exists s' \in Post(s)$ with $s' \models a$ and $\underbrace{\text{FairPaths}(s') \neq \emptyset}_{s' \models_{fair} \exists \Box \text{true}}$

$s \models_{fair} \exists(a \cup a')$ if and only if there exists a finite path fragment

$$s_0 s_1 s_2 \dots s_{n-1} s_n \in \text{Paths}_{fin}(s) \quad \text{with } n \geq 0$$

such that $s_i \models a$ for $0 \leq i < n$, $s_n \models a'$, and $\underbrace{\text{FairPaths}(s_n) \neq \emptyset}_{s_n \models_{fair} \exists \Box \text{true}}$

Basic algorithm

- Determine $\text{Sat}_{\text{fair}}(\exists \square \text{true}) = \{ s \in S \mid \text{FairPaths}(s) \neq \emptyset \}$
- Introduce an atomic proposition a_{fair} and adjust labeling where:
 - $a_{\text{fair}} \in L(s)$ if and only if $s \in \text{Sat}_{\text{fair}}(\exists \square \text{true})$
- Compute the sets $\text{Sat}_{\text{fair}}(\Psi)$ for all subformulas Ψ of Φ (in ENF) by:

$$\begin{aligned}
 \text{Sat}_{\text{fair}}(a) &= \{ s \in S \mid a \in L(s) \} \\
 \text{Sat}_{\text{fair}}(\neg a) &= S \setminus \text{Sat}_{\text{fair}}(a) \\
 \text{Sat}_{\text{fair}}(a \wedge a') &= \text{Sat}_{\text{fair}}(a) \cap \text{Sat}_{\text{fair}}(a') \\
 \text{Sat}_{\text{fair}}(\exists \bigcirc a) &= \text{Sat}(\exists \bigcirc (a \wedge a_{\text{fair}})) \\
 \text{Sat}_{\text{fair}}(\exists(a \cup a')) &= \text{Sat}(\exists(a \cup (a' \wedge a_{\text{fair}}))) \\
 \text{Sat}_{\text{fair}}(\exists \square a) &= \dots
 \end{aligned}$$

- Thus: model checking CTL under fairness constraints is
 - CTL model checking + algorithm for computing $\text{Sat}_{\text{fair}}(\exists \square a)$!

Model checking CTL with fairness

The model-checking problem for CTL with fairness can be reduced to:

- the model-checking problem for CTL (without fairness), and
- the problem of computing $Sat_{fair}(\exists \Box a)$ for $a \in AP$

note that $\exists \Box \text{true}$ is a special case of $\exists \Box a$

thus a single algorithm suffices for $Sat_{fair}(\exists \Box a)$ and $Sat_{fair}(\exists \Box \text{true})$

Core model-checking algorithm

(* states are assumed to be labeled with a_i and b_i *)

compute $Sat_{fair}(\exists \square \text{true}) = \{ s \in S \mid FairPaths(s) \neq \emptyset \}$

forall $s \in Sat_{fair}(\exists \square \text{true})$ **do** $L(s) := L(s) \cup \{ a_{fair} \}$ **od** (* compute $Sat_{fair}(\Phi)$ *)

for all $0 < i \leq |\Phi|$ **do**

for all $\Psi \in Sub(\Phi)$ with $|\Psi| = i$ **do**

switch(Ψ):

true	:	$Sat_{fair}(\Psi) := S;$
a	:	$Sat_{fair}(\Psi) := \{ s \in S \mid a \in L(s) \};$
$a \wedge a'$:	$Sat_{fair}(\Psi) := \{ s \in S \mid a, a' \in L(s) \};$
$\neg a$:	$Sat_{fair}(\Psi) := \{ s \in S \mid a \notin L(s) \};$
$\exists \bigcirc a$:	$Sat_{fair}(\Psi) := Sat(\exists \bigcirc (a \wedge a_{fair}));$
$\exists (a \cup a')$:	$Sat_{fair}(\Psi) := Sat(\exists (a \cup (a' \wedge a_{fair})));$
$\exists \square a$:	compute $Sat_{fair}(\exists \square a)$

end switch

 replace all occurrences of Ψ (in Φ) by the fresh atomic proposition a_Ψ

forall $s \in Sat_{fair}(\Psi)$ **do** $L(s) := L(s) \cup \{ a_\Psi \}$ **od**

od

od

return $I \subseteq Sat_{fair}(\Phi)$

Characterization of $Sat_{fair}(\exists \Box a)$

$$s \models_{sfair} \exists \Box a \quad \text{where} \quad sfair = \bigwedge_{0 < i \leq k} (\Box \Diamond \textcolor{red}{a}_i \rightarrow \Box \Diamond \textcolor{blue}{b}_i)$$

iff there exists a finite path fragment $s_0 \dots s_n$ and a cycle $s'_0 \dots s'_r$ with:

1. $s_0 = s$ and $s_n = s'_0 = s'_r$
2. $s_i \models a$, for any $0 \leq i \leq n$, and $s'_j \models a$, for any $0 \leq j \leq r$, and
3. $Sat(\textcolor{red}{a}_i) \cap \{s'_1, \dots, s'_r\} = \emptyset$ or $Sat(\textcolor{blue}{b}_i) \cap \{s'_1, \dots, s'_r\} \neq \emptyset$ for $0 < i \leq k$

Proof

Computing $Sat_{fair}(\exists \Box a)$

- Consider only state s if $s \models a$, otherwise *eliminate* s
 - change TS into $TS[a] = (S', Act, \rightarrow', I', AP, L')$ with $S' = Sat(a)$,
 - $\rightarrow' = \rightarrow \cap (S' \times Act \times S')$, $I' = I \cap S'$, and $L'(s) = L(s)$ for $s \in S'$
 - ⇒ each infinite path fragment in $TS[a]$ satisfies $\Box a$
- $s \models_{fair} \exists \Box a$ iff there is a non-trivial SCC D in $TS[a]$ reachable from s :
$$D \cap Sat(a_i) = \emptyset \quad \text{or} \quad D \cap Sat(b_i) \neq \emptyset \quad \text{for } 0 < i \leq k \quad (*)$$
- $Sat_{sfair}(\exists \Box a) = \{ s \in S \mid Reach_{TS[a]}(s) \cap T \neq \emptyset \}$
 - T is the union of all non-trivial SCCs C that contain D satisfying $(*)$

how to compute the set T of SCCs?

Unconditional fairness

$$ufair \equiv \bigwedge_{0 < i \leq k} \square \lozenge b_i$$

Let T be the set union of all non-trivial SCCs C of $TS[\textcolor{red}{a}]$ satisfying

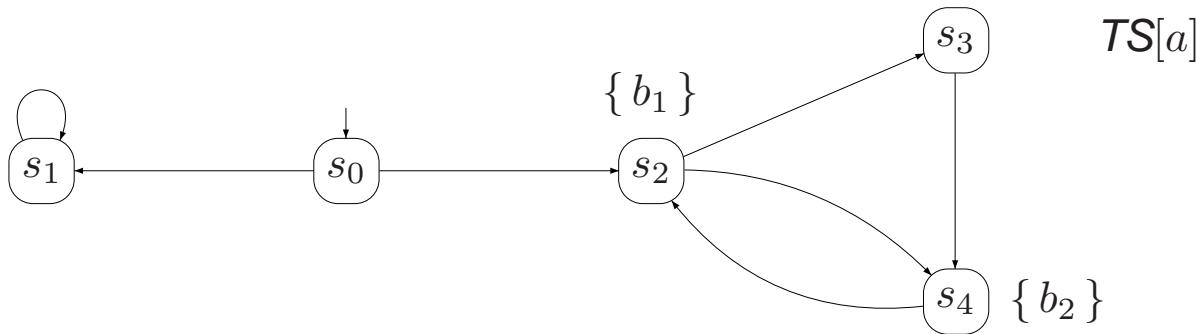
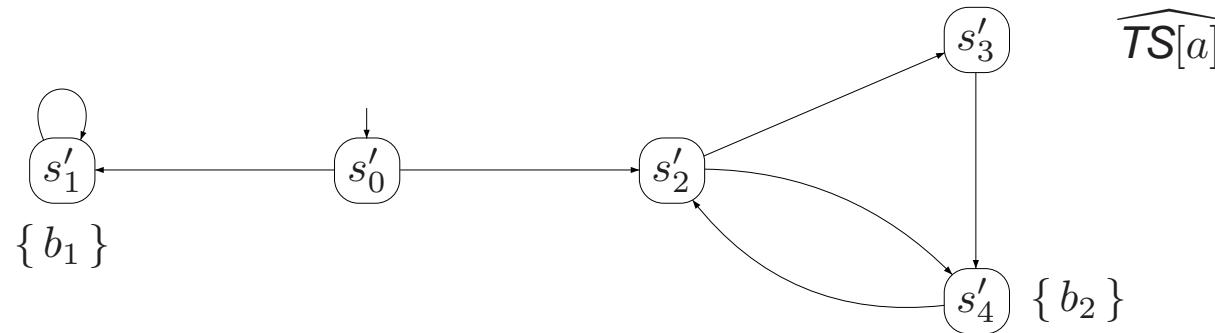
$$C \cap \text{Sat}(\textcolor{blue}{b}_i) \neq \emptyset \quad \text{for all } 0 < i \leq k$$

It now follows:

$$s \models_{ufair} \exists \square a \quad \text{if and only if} \quad \text{Reach}_{TS[\textcolor{red}{a}]}(s) \cap T \neq \emptyset$$

$\Rightarrow T$ can be determined by a simple graph analysis (DFS)

Example



$TS[a] \models_{ufair} \exists \Box a$ but $\widehat{TS[a]} \not\models_{ufair} \exists \Box a$ with $ufair = \Box \Diamond b_1 \wedge \Box \Diamond b_2$

Strong fairness

- $sfair = \square \lozenge \textcolor{red}{a}_1 \rightarrow \square \lozenge \textcolor{blue}{b}_1$, i.e., $k=1$
- $s \models_{sfair} \exists \square a$ iff C is a non-trivial SCC in $TS[a]$ reachable from s with:
 - (1) $C \cap \text{Sat}(\textcolor{blue}{b}_1) \neq \emptyset$, or
 - (2) $D \cap \text{Sat}(\textcolor{red}{a}_1) = \emptyset$, for some non-trivial SCC D in C
- D is a non-trivial SCC in the graph that is obtained from $C[\neg \textcolor{red}{a}_1]$
- For T the union of non-trivial SCCs in satisfying (1) and (2):

$$s \models_{sfair} \exists \square a \quad \text{if and only if} \quad \text{Reach}_{TS[a]}(s) \cap T \neq \emptyset$$

for several strong fairness constraints ($k > 1$), this is applied recursively
 T is determined by standard graph analysis (DFS)

Overview Lecture #22

- Repetition: fairness in LTL
- Fair semantics for CTL
- CTL model checking with fairness

⇒ Time complexity

- Summary of CTL model checking

Time complexity

For transition system TS with N states and M transitions,
CTL formula Φ , and CTL fairness constraint $fair$ with k conjuncts,
the CTL model-checking problem $TS \models_{fair} \Phi$
can be determined in time $\mathcal{O}(|\Phi| \cdot (N + M) \cdot k)$

Overview Lecture #22

- Repetition: fairness in LTL
- Fair semantics for CTL
- CTL model checking with fairness
- Time complexity

⇒ Summary of CTL model checking

Summary of CTL model checking (1)

- CTL is a logic for formalizing properties over computation **trees**
- The expressiveness of LTL and CTL is incomparable
- Fairness constraints cannot be expressed in CTL
 - but are incorporated by adapting the CTL semantics such that quantification is over fair paths
- CTL model checking is by a recursive descent over parse tree of Φ
 - $\text{Sat}(\exists(\Phi \cup \Psi))$ is determined using a least fixed point computation
 - $\text{Sat}(\exists \Box \Phi)$ is determined by a greatest fixed point computation

Summary of CTL model checking (2)

- Time complexity of CTL model-checking $TS \models \Phi$ is:
 - is linear in $|TS|$ and $|\Phi|$ and linear in k for k fairness constraints
- Checking $TS \models_{fair} \Phi$ is $TS \models \Phi$ plus computing $Sat_{fair}(\exists \square a)$
- Counterexamples and witnesses for CTL path-formulae can be determined using graph algorithms
- CTL* is more expressive than both CTL and LTL
- The CTL* model-checking problem can be solved by an appropriate combination of the CTL and the LTL model-checking algorithm
- The CTL*-model checking problem is PSPACE-complete