

Bisimulation and CTL*

Lecture #24 of Model Checking

Joost-Pieter Katoen

Lehrstuhl 2: Software Modeling & Verification

E-mail: katoen@cs.rwth-aachen.de

January 28, 2009

Overview Lecture #24

⇒ Repetition: Bisimulation equivalence

- CTL* equivalence

Bisimulation on states

$\mathcal{R} \subseteq S \times S$ is a *bisimulation* on TS if for any $(s_1, s_2) \in \mathcal{R}$:

- $L(s_1) = L(s_2)$
- if $s'_1 \in Post(s_1)$ then there exists an $s'_2 \in Post(s_2)$ with $(s'_1, s'_2) \in \mathcal{R}$
- if $s'_2 \in Post(s_2)$ then there exists an $s'_1 \in Post(s_1)$ with $(s'_1, s'_2) \in \mathcal{R}$

s_1 and s_2 are *bisimilar*, $s_1 \sim_{TS} s_2$, if $(s_1, s_2) \in \mathcal{R}$ for some bisimulation \mathcal{R} for TS

$s_1 \sim_{TS} s_2 \quad \text{if and only if} \quad TS_{s_1} \sim TS_{s_2}$

Bisimulation equivalence

$$s_1 \rightarrow s'_1$$

$$\mathcal{R}$$

$$s_2$$

can be completed to

$$s_1 \rightarrow s'_1$$

$$\mathcal{R}$$

$$s_2 \rightarrow s'_2$$

and

$$s_1$$

$$\mathcal{R}$$

$$s_2 \rightarrow s'_2$$

$$s_1 \rightarrow s'_1$$

$$\mathcal{R}$$

$$s_2 \rightarrow s'_2$$

Coarsest bisimulation

\sim_{TS} is an equivalence and the coarsest bisimulation for TS

Quotient transition system

For $TS = (S, Act, \rightarrow, I, AP, L)$ and bisimulation $\sim_{TS} \subseteq S \times S$ on TS let

$TS/\sim_{TS} = (S', \{\tau\}, \rightarrow', I', AP, L')$, the *quotient* of TS under \sim_{TS}

where

- $S' = S/\sim_{TS} = \{[s]_{\sim} \mid s \in S\}$ with $[s]_{\sim} = \{s' \in S \mid s \sim s'\}$
- \rightarrow' is defined by:
$$\frac{s \xrightarrow{\alpha} s'}{[s]_{\sim} \xrightarrow{\tau'} [s']_{\sim}}$$
- $I' = \{[s]_{\sim} \mid s \in I\}$
- $L'([s]_{\sim}) = L(s)$

Overview Lecture #24

- Repetition: Bisimulation equivalence

⇒ CTL* equivalence

Syntax of CTL*

CTL* *state-formulas* are formed according to:

$$\Phi ::= \text{true} \quad | \quad a \quad | \quad \Phi_1 \wedge \Phi_2 \quad | \quad \neg \Phi \quad | \quad \exists \varphi$$

where $a \in AP$ and φ is a path-formula

CTL* *path-formulas* are formed according to the grammar:

$$\varphi ::= \Phi \quad | \quad \varphi_1 \wedge \varphi_2 \quad | \quad \neg \varphi \quad | \quad \bigcirc \varphi \quad | \quad \varphi_1 \bigcup \varphi_2$$

where Φ is a state-formula, and φ, φ_1 and φ_2 are path-formulas

in CTL*: $\forall \varphi = \neg \exists \neg \varphi$. This does not hold in CTL!

CTL* equivalence

States s_1 and s_2 in TS (over AP) are **CTL*-equivalent**:

$$s_1 \equiv_{CTL^*} s_2 \quad \text{if and only if} \quad (s_1 \models \Phi \text{ iff } s_2 \models \Phi)$$

for all CTL* state formulas over AP

$$TS_1 \equiv_{CTL^*} TS_2 \quad \text{if and only if} \quad (TS_1 \models \Phi \text{ iff } TS_2 \models \Phi)$$

for any sublogic of CTL*, logical equivalence is defined analogously

Trace equivalence and LTL equivalence

Let TS be a *finite* transition system and s, s' states in TS

The following statements are equivalent:

- (1) $Traces(s) = Traces(s')$
- (2) s and s' are LTL-equivalent, i.e., $s \equiv_{LTL} s'$

Bisimulation vs. CTL* and CTL equivalence

Let TS be a *finite* transition system and s, s' states in TS

The following statements are equivalent:

- (1) $s \sim_{TS} s'$
- (2) s and s' are CTL-equivalent, i.e., $s \equiv_{CTL} s'$
- (3) s and s' are CTL*-equivalent, i.e., $s \equiv_{CTL^*} s'$

this is proven in three steps: $\equiv_{CTL} \subseteq \sim \subseteq \equiv_{CTL^*} \subseteq \equiv_{CTL}$

Proof: $\equiv_{CTL} \subseteq \sim_{TS}$

Example master formula

Proof: $\sim_{TS} \subseteq \equiv_{CTL}^*$

Important remarks

- Consider the following CTL fragment, say CTL^- :

$$\Phi ::= \text{true} \quad | \quad a \quad | \quad \Phi_1 \wedge \Phi_2 \quad | \quad \neg \Phi \quad | \quad \exists \bigcirc \Phi$$

- Then: \equiv_{CTL^-} coincides with \equiv_{CTL^*}
 $\Rightarrow \text{CTL}^-$ thus also characterizes bisimulation
- The relations \sim , \equiv_{CTL^*} , and \equiv_{CTL} coincide
 - for finite transition systems
 - for finitely-branching transition systems; *Why?*
 - but not for arbitrary infinite transition systems' *Why?*

Bisimulation vs. CTL*-equivalence

For any transition systems TS and TS' (over AP):

$$TS \sim TS' \quad \text{iff} \quad TS \equiv_{CTL} TS' \quad \text{iff} \quad TS \equiv_{CTL^*} TS'$$

⇒ prior to model-check Φ , it is safe to first minimize TS wrt. \sim

this can be done with time complexity $\mathcal{O}(K \cdot \log N)$

The importance of this result

- CTL and CTL* equivalence coincide
 - despite the fact that CTL* is more expressive than CTL
- Bisimilar transition systems preserve the same CTL* formulas
 - and thus the same LTL formulas (and LT properties)
- Non-bisimilarity can be shown by a single CTL (or CTL*) formula
 - $TS_1 \models \Phi$ and $TS_2 \not\models \Phi$ implies $TS_1 \not\sim TS_2$
- You even do not need to use an until-operator!
- To check $TS \models \Phi$, it suffices to check $TS/\sim \models \Phi$

Example