

Prof. Dr. Ir. J.-P. Katoen

Introduction to Model Checking

Dr. T. Han and A. Mereacre

Summer term 2010

– Series 5 –

Hand in on June 2 before the exercise class.

Exercise 1

(3 points)

Let $AP = \{a, b, c\}$. Consider the following linear time properties:

- (a) If a becomes valid, afterwards b stays valid ad infinitum or until c holds.
- (b) Between two neighbouring occurrences of a , b always holds.
- (c) Between two neighbouring occurrences of a , b occurs more often than c .
- (d) $a \wedge \neg b$ and $b \wedge \neg a$ are valid in alternation or until c becomes valid.

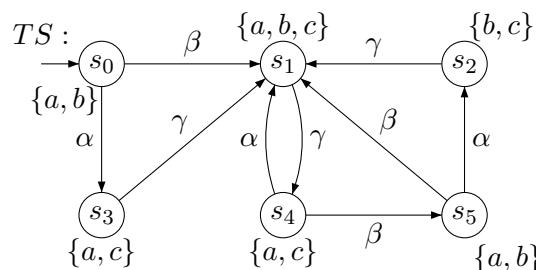
For each property P_i ($1 \leq i \leq 4$), decide if it is a regular safety property (argument why!) and if so, define the NFA \mathcal{A}_i with $\mathcal{L}(\mathcal{A}_i) = \text{BadPref}(P_i)$.

Hint: You may use propositional formulas over the set AP as transition labels.

Exercise 2

(2 + 2 points)

Consider the following transition system TS



and the regular safety property

$P_{safe} =$ “always if a is valid and $b \wedge \neg c$ was valid somewhere before, then a and b do not hold thereafter at least until c holds”

As an example, it holds:

$$\begin{aligned}
 \{b\} \emptyset \{a, b\} \{a, b, c\} &\in \text{pref}(P_{safe}) \\
 \{a, b\} \{a, b\} \emptyset \{b, c\} &\in \text{pref}(P_{safe}) \\
 \{b\} \{a, c\} \{a\} \{a, b, c\} &\in \text{BadPref}(P_{safe}) \\
 \{b\} \{a, c\} \{a, c\} \{a\} &\in \text{BadPref}(P_{safe})
 \end{aligned}$$

Questions:

- (a) Define an NFA \mathcal{A} such that $\mathcal{L}(\mathcal{A}) = \text{MinBadPref}(P_{safe})$.
- (b) Decide whether $TS \models P_{safe}$ using the $TS \otimes \mathcal{A}$ construction.
Provide a counterexample if $TS \not\models P_{safe}$.

Exercise 3

(2 + 2 points)

Find nondeterministic Büchi automata that accept the following ω regular languages:

- (a) $L_1 = \{\alpha \in \{A, B\}^\omega \mid \alpha \text{ contains } ABA \text{ infinitely often, but } AA \text{ only finitely often}\}$
- (b) $L_2 = \mathcal{L}((AB + C)^*((AA + B)C)^\omega + (A^*C)^\omega)$