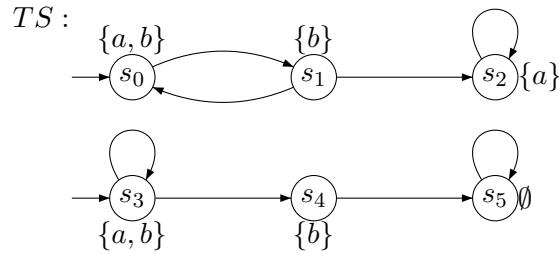


Introduction to Model Checking
 Summer term 2010


– Series 7 –

Hand in on June 16 before the exercise class.

Exercise 1

(4 points)

Let $AP = \{a, b, c\}$. Consider the transition system TS over AP outlined below

and the LTL fairness assumption $fair = (\square \diamond (a \wedge b) \rightarrow \square \diamond \neg c) \wedge (\diamond \square (a \wedge b) \rightarrow \square \diamond \neg b)$.

a) Specify the fair paths of TS !

b) Decide for each of the following LTL formulas φ_i whether it holds $TS \models_{fair} \varphi_i$:

$$\varphi_1 = \bigcirc \neg a \rightarrow \diamond \square a \quad \varphi_2 = b \mathbf{U} \square \neg b \quad \varphi_3 = b \mathbf{W} \square \neg b.$$

In case $TS \not\models_{fair} \varphi_i$, indicate a path $\pi \in FairPaths(TS)$ for which $\pi \not\models \varphi$ holds.

Exercise 2

(4 points)

We consider the release operator \mathbf{R} which is defined as $\varphi \mathbf{R} \psi := \neg (\neg \varphi \mathbf{U} \neg \psi)$.

a) Informally describe the meaning of the expansion law for the release operator \mathbf{R} . Then prove its correctness formally.

b) Prove the following two equivalence laws that express \mathbf{R} by \mathbf{W} and vice versa:

- $\varphi \mathbf{R} \psi \equiv (\neg \varphi \wedge \psi) \mathbf{W} (\varphi \wedge \psi)$
- $\varphi \mathbf{W} \psi \equiv (\neg \varphi \vee \psi) \mathbf{R} (\varphi \vee \psi)$