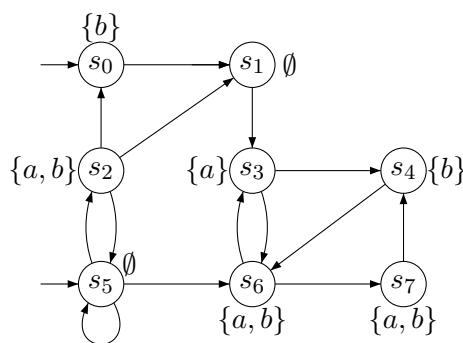


– Series 11 –

Hand in on July 21 before the exercise class.

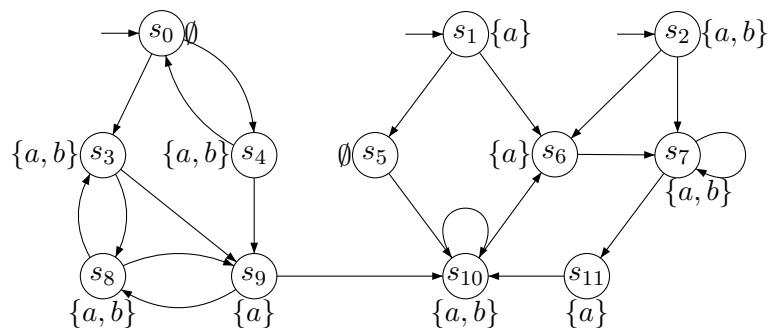

Exercise 1

(3 points)

Consider the CTL*-formula (over $AP = \{a, b\}$)

$$\Phi = \forall \Diamond \Box \exists \bigcirc (a \mathbf{U} \exists \Box b)$$

and the transition system TS outlined below:


Apply the CTL* Model Checking Algorithm to compute $Sat(\Phi)$ and decide whether $TS \models \Phi$.

Hint: You may infer the satisfaction sets for LTL formulas directly.

Exercise 2

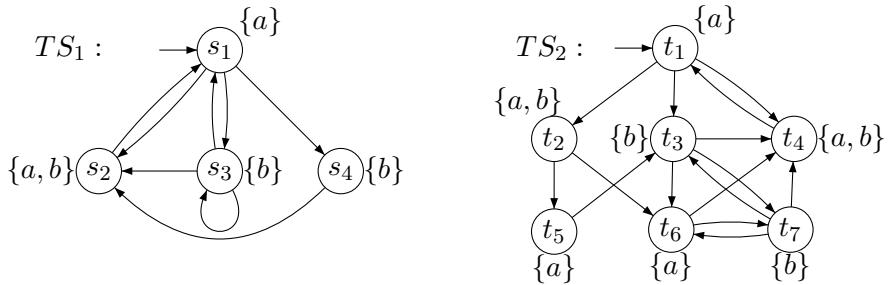
(2 + 2 points)

Consider the transition system TS over $AP = \{a, b\}$ outlined below:

- Determine the bisimulation equivalence \sim_{TS} and depict the bisimulation quotient system TS/\sim .
- Provide CTL master formulas Φ_C for each bisimulation equivalence class C .

Exercise 3

(3 points)


Let TS be a transition system with set of states S . We reverse the definition of bisimulation for TS in the following sense: Two states s and t are *backward bisimilar* if they are equally labelled, and their predecessors behave the same when going backwards.

- Formally define backward bisimulation and backward bisimilarity (denoted \sim_{\leftarrow}).
- Prove that \sim_{\leftarrow} is an equivalence relation.
- Provide a transition system TS such that TS/\sim and TS/\sim_{\leftarrow} are not isomorphic!

Exercise 4

(1 + 4 points)

Consider the following transition systems TS_1 and TS_2 :

- Decide whether $TS_1 \sim TS_2$. Explain your answer formally.
- Decide whether $TS_1 \simeq TS_2$. Explain your answer formally.