

Prof. Dr. Ir. J.-P. Katoen

Dr. T. Han and A. Mereacre

Introduction to Model Checking

Summer term 2010

– Series 4 –

Hand in on May 19 before the exercise class.

Exercise 1

(5 points)

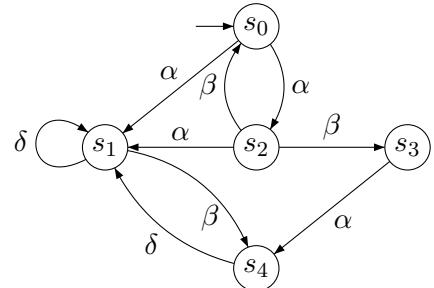
Let $AP = \{a, b\}$ and let P be the LT property of all infinite words $\sigma = A_0 A_1 A_2 \dots \in (2^{AP})^\omega$ such that there exists $n \geq 0$ with $a \in A_i$ for $0 \leq i < n$, $\{a, b\} = A_n$ and $b \in A_j$ for infinitely many $j \geq 0$. Provide a decomposition $P = P_{\text{safe}} \cap P_{\text{live}}$ into a safety and into a liveness property.

Exercise 2

(1 + 1 + 1 points)

Consider the transition system TS on the right (where atomic propositions are omitted). Decide which of the following fairness assumptions \mathcal{F}_i are realizable for TS . Justify your answers!

- a) $\mathcal{F}_1 = (\{\{\alpha\}\}, \{\{\delta\}\}, \{\{\alpha, \beta\}\})$
- b) $\mathcal{F}_2 = (\{\{\alpha, \delta\}\}, \{\{\alpha, \beta\}\}, \{\{\delta\}\})$
- c) $\mathcal{F}_3 = (\{\{\alpha, \delta\}, \{\beta\}\}, \{\{\alpha, \beta\}\}, \{\{\delta\}\})$



Exercise 3

(1 + 1 points)

Let $n \geq 1$. Consider the language $L_n \subseteq \Sigma^*$ over the alphabet $\Sigma = \{A, B\}$ that consists of all finite words where the symbol B is on position n from the right, i.e., L_n contains exactly the words $A_1 A_2 \dots A_k \in \{A, B\}^*$ where $k \geq n$ and $A_{k-n+1} = B$. For instance, the word $ABBAABAB$ is in L_3 .

- a) Construct an NFA \mathcal{A}_n with at most $n + 1$ states such that $\mathcal{L}(\mathcal{A}_n) = L_n$.
- b) Determinize this NFA \mathcal{A}_n using the powerset construction algorithm.