Introduction to Model Checking

Lecture # 1: Motivation, Background, and Course Organization

Prof. Dr. Ir. Joost-Pieter Katoen

Chair Software Modeling and Verification

RWTHAACHEN
UNIVERSITY

October 10, 2011

Software Errors

Therac-25 Radiation Overdosing (1985-87)

@ Radiation machine for treatment of
cancer patients

@ At least 6 cases of overdosis in period
1985-1987 (~ 100-times dosis)

@ Three cancer patients died

@ Source: Design error in the control
software (race condition)

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking

Software Errors

AT&T Telephone Network Outage (1990)

@ January 1990: problem in New York
City leads to 9 h-outage of large parts
of U.S. telephone network

o Costs: several 100 million US$

@ Source: software flaw (wrong
interpretation of break statement in
¢)

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking

Software Errors

Ariane 5 Crash (1996)

Crash of the european Ariane 5-missile in
June 1996

Costs: more than 500 million US$

Source: software flaw in the control software

A data conversion from a 64-bit floating
point to 16-bit signed integer

Efficiency considerations had led to the
disabling of the software handler (in Ada)

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking

Software Errors

Pentium FDIV Bug (1994)

o FDIV = floating point division unit

o Certain floating point division
operations performed produced
incorrect results

@ Byte: 1 in 9 billion floating point
divides with random parameters would
produce inaccurate results

@ Loss: ~ 500 million US$ (all flawed

processors were replaced) + enormous
image loss of Intel Corp.

Source: flawless realization of
floating-point division

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking

Software Correctness

The Quest for Software Correctness

Speech@©@50-years Celebration CWI Amsterdam

“It is fair to state, that in this digital era
correct systems for information processing
are more valuable than gold.”

o

Henk Barendregt

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking

Software Correctness

The Importance of Software Correctness

Rapidly increasing in different applications

@ embedded systems

@ communication protocols

@ transportation systems

= reliability incrasingly depends on software!

Defects can be and extremely

@ products subject to mass-production

@ safety-critical systems

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking

Software Correctness

What is System Verification?

Folklore “definition”

System verification amounts to check whether a system fulfills
the qualitative requirements that have been identified

Verification # validation

@ Verification = “check that we are building the thing right”
o Validation = “check that we are building the right thing"

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking

Software Correctness

Software Verification Techniques

Peer reviewing
@ static technique: manual code inspection, no software execution
@ detects between 31 and 93% of defects with median of about 60%

@ subtle errors (concurrency and algorithm defects) hard to catch

@ dynamic technique in which software is executed

Some figures

@ 30% to 50% of software project costs devoted to testing
@ more time and effort is spent on validation than on construction

@ accepted defect density: about 1 defects per 1,000 code lines

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking

Software Correctness

Bug Hunting: the Sooner, the Better

Analysis ':';‘:"“Pm" Programming Uit Testing | System Testing | Operation
esign
% - v 125
inbroduced M“"d¢ _,/. \- i/ i
ems {im By . eost ol
e o m %) i JI,-"n:nu'l.-\:ll.m. T
w4 peremor
W (im 1,000 §
W% T | T8
2% - -5
s 4 M 28
[= i } E—— a

Time {won-linear)

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking

Software Correctness

Formal Methods

Intuitive description

Formal methods are the

“applied mathematics for modelling and analysing ICT systems”

Formal methods offer a large potential for:

@ obtaining an early integration of verification in the design process

@ providing more effective verification techniques (higher coverage)

@ reducing the verification time

Usage of formal methods
Highly recommended by IEC, FAA, and NASA for safety-critical software

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking

Software Correctness

Formal Verification Techniques for Property P

Deductive methods
@ method: provide a formal proof that P holds
@ tool: theorem prover/proof assistant or proof checker

@ applicable if: system has form of a mathematical theory

Model checking

@ method: systematic check on P in all states

@ tool: model checker (SPIN, NUSMV, UPPAAL, ...)

@ applicable if: system generates (finite) behavioural model

Model-based simulation or testing

@ method: test for P by exploring possible behaviours

Introduction to Model Checking

Prof. Dr. Ir. Joost-Pieter Katoen

Software Correctness

Simulation and Testing

Basic procedure:

@ take a model (simulation) or a realisation (testing)
@ stimulate it with certain inputs, i.e., the tests

@ observe reaction and check whether this is “desired”

Important drawbacks:

@ number of possible behaviours is very large (or even infinite)

@ unexplored behaviours may contain the fatal bug

About testing ...

testing/simulation can show the presence of errors, not their absence

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking

Software Correctness

Milestones in Formal Verification

@ Mathematical program correctness (Turing, 1949)

@ Syntax-based technique for sequential programs (Hoare, 1969)
o for a given input, does a computer program generate the

correct output?
e based on compositional proof rules expressed in predicate logic

@ Syntax-based technique for concurrent programs (Pnueli, 1977)
e handles properties referring to states during the computation
e based on proof rules expressed in temporal logic

@ Automated verification of concurrent programs

e model-based instead of proof-rule based approach
o does the concurrent program satisfy a given (logical) property?

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking

Software Correctness

Example Proof Rules

{ZAb} P{T}
{Ale/x]} x = e {A} (T} while bdo P {Z A —b}
{A} P{B} {B} Q{C} A=A {AYP{B} B =B
{A} P;Q {C} | {A} P {B}

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking

Model Checking

Model Checking Overview

Formalizing

“*not biased towards the

most probable scenarios™

Maodeling

Model Checking

Simulation

Insufficient

memory

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking

Model Checking

Paris Kanellakis Theory and Practice Award 1998

Randal Edmund E. Allen Ken
Bryant Clarke Emerson McMillan

For their invention of "symbolic model checking,”

a method of formally checking system designs,
which is widely used in the computer hardware industry
and starts to show significant promise also in
software verification and other areas.

Some other winners: Rivest et al., Paige and Tarjan, Buchberger, ...

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking

Model Checking

Godel Prize 2000

Moshe Vardi Pierre Wolper

“For work on model checking with finite automata.”

Some other winners: Shor, Sénizergues, Agrawal et al., ...

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking

Model Checking

ACM System Software Award 2001

SPIN'MODEL
CHECKER

Gerard J. Holzmann
SPIN book

SPIN is a popular open-source software tool, used by
thousands of people worldwide, that can be used for the
formal verification of distributed software systems.

Some other winners: TeX, Postscript, UNIX, TCP/IP, Java, Smalltalk

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking

Model Checking

ACM Turing Award 2007

Edmund Clarke E. Allen Emerson Joseph Sifakis

“For their role in developing Model-Checking into a
highly effective verification technology,
widely adopted in the hardware and software industries.”

Some other winners: Dijkstra, Cook, Hoare, Rabin and Scott

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking

Model Checking

Model Checking Overview

Formalizing

“*not biased towards the

most probable scenarios™

Maodeling

Model Checking

Simulation

Insufficient

memory

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking

Model Checking

What is Model Checking?

Informal description

Model checking is an automated technique that, given
a finite-state model of a system and a formal property,
systematically checks whether this property holds

for (a given state in) that model.

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking

Model Checking

What are Models?

Prof. Dr. Ir. Joost-Pieter Katoen ion to Model Checking

Model Checking

What are Models?

Transition systems

@ States labeled with basic propositions
@ Transition relation between states
@ Action-labeled transitions to facilitate composition

@ Programs are transition systems

@ Multi-threading programs are transition systems
@ Communicating processes are transition systems
@ Hardware circuits are transition systems

@ What else?

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking

Model Checking

What are Properties?

Example properties

@ Can the system reach a deadlock situation?
@ Can two processes ever be simultaneously in a critical section?

@ On termination, does a program provide the correct output?

Temporal logic

@ Propositional logic
@ Modal operators such as [“always” and { “eventually”
o Interpreted over state sequences (linear)

@ Or over infinite trees of states (branching)

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking

Model Checking

NASA's Deep Space-1 Spacecraft

Model checking

has been applied to several
modules of this spacecraft

Plasma Experiment
o

nnnnnn

mmmmmmmmmmmmmmm

ttttttttt

Prof. Dr. Ir. Joost-Pieter Katoen

and propulsi on module

launched in October 1998

Introduction to Model Checking

Model Checking

A Small Program Fragment

process Inc = while true do if x < 200 then x :=x+ 1 od
process Dec = while true do if x > 0 then x := x — 1 od

process Reset = while true do if x = 200 then x := 0 od

is x always between (and including) 0 and 2007

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking

Model Checking

Modeling in NanoPromela

int = = 0;

proctype Inci) {
do :: true -= if 11 (x < 200) - x = x + 1 fi od

}
proctype Dec() {

do 1 true -= 1if 1z (x> 0) - x = x - 1 fi eod
}
proctype Reset() {

do :: true - if 1@ (x == 200) -» x = 0 fi od
}
init {

atomic{ run Inc{) j rum Deci) ; run Reseti) }

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking

Model Checking

How to Check?

Extend the model with a “monitor” process that checks 0 < » < 2000

proctype check() {
assert (x == 0 && = == 200)

}

init {
atomic{ run Inc() ; run Dec(}) ; run Reset() ; run Check() }

}

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking

Model Checking

A Counterexample

&605: proc 1 (Inc) line 9 "pan_in" (state 2) [((x<200))]
&06: proc 1 (Inc) line 3 "pan_in=® (state 3) [x = (x+l)]
607: proc 2 (Dec) lime 5 "pan_in" (state 2) [if= = 01
&08B: proc 1 (Inc) line 9 "pan_in" (state 1) [(1l}]

60%9: proc 23 (Reset) line 13 "pan in" (state 2} [({x==200))]
610: proc 3 (Reset) line 13 "pan_in” (state 3) [x = 0]

6ll: proc 3 (Reset) line 13 "pan in™ (state 1) [(1}]

6l2: proc 2 (Dec) line 5 "pan_in" (state 3) [x = (x-1)]
6l3: proc 2 (Dec) line 5 "pan_in= (state 1) [(1l}]

spin: line 17 "pan_in", Error: assertion viclated
spin: text of failed assertion: assert(((x==0)&&(x==200)))

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking

Model Checking

Breaking the Error

int = = 0;

proctype Inc() {
do :: true -> atomic{ if ::

proctype Dec() {
do :: true -> atomic{ 1L ::

proctype Reset() {
do :: true -> atomic{ if

init {

atomic{ run Inc{) ; run Dec()

< 200 -> x = x + 1 fi } od

0 -x=x-1£i} od

== 200 -» x = 0 fi } od

;j Tun Reset() }

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking

Model Checking

The Model Checking Process

@ Modeling phase
e model the system under consideration
e as a first sanity check, perform some simulations
o formalise the property to be checked
@ Running phase
e run the model checker to check the validity of the property in
the model
@ Analysis phase

o property satisfied? — check next property (if any)
e property violated? —
@ analyse generated counterexample by simulation
@ refine the model, design, or property ... and repeat the entire
procedure

e out of memory? — try to reduce the model and try again

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking

Model Checking

The Pros of Model Checking

widely applicable (hardware, software, protocol systems, ...)
allows for partial verification (only most relevant properties)
potential “push-button” technology (software-tools)

rapidly increasing industrial interest

in case of property violation, a counterexample is provided
sound and interesting mathematical foundations

not biased to the most possible scenarios (such as testing)

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking

Model Checking

The Cons of Model Checking

@ main focus on control-intensive applications (less
data-oriented)

@ model checking is only as “good” as the system model
@ no guarantee about completeness of results

@ impossible to check generalisations (in general)

Nevertheless:

Model checking is a effective technique
to expose potential design errors

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking

Model Checking

Striking Model-Checking Examples

@ Security: Needham-Schroeder encryption protocol
e error that remained undiscovered for 17 years unrevealed

@ Transportation systems
e train model containing 10476 states

@ Model checkers for C, Java and C++
o used (and developed) by Microsoft, Digital, NASA
e successful application area: device drivers

@ Dutch storm surge barrier in Nieuwe Waterweg

@ Software in the current/next generation of space missiles
o NASA's Mars Pathfinder, Deep Space-1, JPL LARS group

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking

Course Details

Course Topics

What are appropriate ?

@ transition systems
@ from programs to transition systems

from circuits to transition systems

o
@ multi-threading, communication, ...
o

nanoPromela: an example modeling language

o safety: “something bad never happen”
@ liveness: “something good eventually happens”
o fairness: "“if something may happen frequently, it will happen”

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking

Course Details

Course Topics

How to check properties?

@ finite-state automata and regular safety properties
@ Biichi automata and w-regular properties

@ model checking: nested depth-first search

How to express properties

@ Linear-time Temporal Logic (LTL): syntax and semantics
@ What can be expressed in LTL?
@ LTL model checking: algorithms, complexity

@ How to treat fairness in LTL

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking

Course Details

Course Topics

How to express properties ?

e Computation Tree Logic (CTL): syntax and semantics
@ What can be expressed in CTL?

@ CTL model checking: algorithms, complexity

@ How to treat fairness in CTL

How to make models smaller?

@ Equivalences and pre-orders on transition systems

@ Which properties are preserved?

@ Minimization algorithms

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking

Course Details

Course Material

Principles of Model Checking
CHRISTEL BAIER

TU Dresden, Germany

JOOST-PIETER KATOEN

RWTH Aachen University, Germany

Gerard J. Holzmann, NASA JPL, Pasadena:

“This book offers one of the most comprehensive

Principles of Model Checking
Christel Baier and Joost-Pieter Katoen

introductions to logic model checking techniques

available today. The authors have found a way to

explain both basic concepts and foundational

theory thoroughly and in crystal clear prose.”

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking

Course Details

Lectures

e Mon 13:15 - 14:45 (5052), Tue 14:00-15:30 (AH2)

@ Check regularly course web page for possible “no shows”

<

@ Lecture slides (with gaps) are made available on web page

@ Many copies of the book are available in the CS library

moves.rwth-aachen.de/i2/595

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking

Course Details

Exercises and Exam

Exercise Classes

@ Wed 15:45 - 17:15 in AH6 (start: October 26)

@ Instructors: Friedrich Gretz and Falak Sher

Weekly exercise series

@ Intended for groups of 2 students

@ New series: every Wed on course web page (start: Oct. 19)
@ Solutions: Wed (before 15:45) one week later

@ Student assistants:

Exam:
@ February 17, 2012 and March 19-23, 2012 (written exam)

@ participation if > 40% of all exercise points are gathered

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking

Course Details

Course Prerequisites

Aim of the course
It's about the theoretical foundations of model checking, not its usage!

Prerequisites

@ Automata and language theory

@ Algorithms and data structures

o Computability and complexity theory
o Mathematical logic

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking

Course Details

Course Embedding

Follow-up courses

@ Advanced model checking (SS 2012)
Practical exercises model checking (WS 2012/13)
Modeling and verification of probabilistic systems (SS 2011)

Automata and reactive systems (Prof. Thomas)
Satisfiability checking (Prof. Abrahdm)

Various seminars (Katoen/Thomas/Abrdham /Kowalewski)

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking

Course Details

Questions?

Prof. Dr. Ir. Joost-Pieter Katoen Introduction to Model Checking

	Software Errors
	Software Correctness
	Model Checking
	Course Details

