

Introduction to Model Checking

Winter term 2011/2012

– Series 1 –

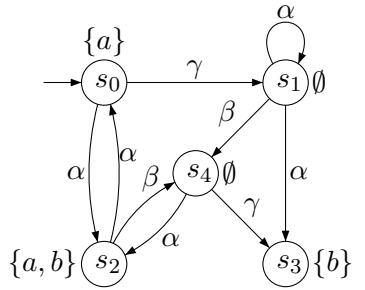
Hand in on October 26th before the exercise class.

Exercise 1

(3 points)

For this exercise we give the following definition:

Definition 1. Deterministic Transition System


Let $T = (S, Act, \rightarrow, I, AP, L)$ be a transition system.

- a) T is called *action-deterministic* if $|I| \leq 1$ and $|Post(s, \alpha)| \leq 1$ for all states s and actions α .
- b) T is called *AP-deterministic* if $|I| \leq 1$ and $|Post(s) \cap \{s' \in S \mid L(s') = A\}| \leq 1$ for all states s and $A \in 2^{AP}$.

■

Now let TS be the transition system depicted on the right.

- a) Give the formal definition of TS .
- b) Specify a finite and an infinite execution of TS .
- c) Decide whether TS is an *AP*-deterministic or an action-deterministic transition system. Justify your answer!

Exercise 2

(1 points)

We are given three (primitive) processes P_1, P_2 , and P_3 with shared integer variable x and local registers r_1, r_2 and r_3 . The program of process P_i is as follows:

Algorithm 1 Process P_i

```

for  $k_i = 1, \dots, 10$  do
  LOAD( $r_i \leftarrow x$ );
  INC( $r_i$ );
  STORE( $r_i \rightarrow x$ );
end for
  
```

That is, P_i executes ten times the assignment $x := x+1$. The assignment $x := x+1$ is realized using the three actions LOAD, INC and STORE. Consider now the parallel program:

Algorithm 2 Parallel program P

```

 $x := 0$ ;
 $P_1 \parallel P_2 \parallel P_3$ 
  
```

Question: Does P have an execution that halts with the terminal value $x = 2$?

Exercise 3

(4 points)

The following program is a mutual exclusion protocol for two processes due to Pnueli. There is a single shared variable s which is either 0 or 1, and initially 1. Besides, each process has a local Boolean variable y that initially equals 0. The program text for process P_i ($i = 0, 1$) is as follows:

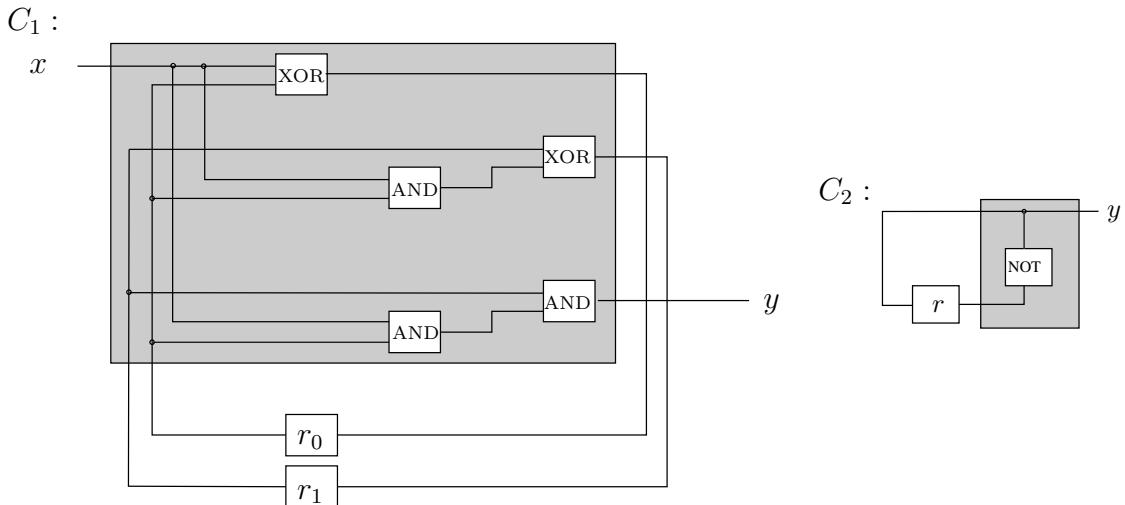
```

l0: loop forever do
    begin
l1:    Noncritical section
l2:     $(y_i, s) := (1, i);$ 
l3:    wait until  $((y_{1-i} = 0) \vee (s \neq i));$ 
l4:    Critical section
l5:     $y_i := 0$ 
    end.

```

Here, the statement $(y_i, s) := (1, i);$ is a *multiple assignment* in which variable $y_i := 1$ and $s := i$ is a single, atomic step.

Questions:


- Define the program graph of a process in Pnueli's algorithm.
- Determine the transition system for each process.
- Construct their parallel composition.
- Check whether the algorithm ensures mutual exclusion, i.e. both processes are never in their critical section at the same time.
- Check whether the algorithm ensures starvation freedom, i.e. every time a process want to enter its critical section it can eventually do so.

The last two questions may be answered by inspecting the transition system.

Exercise 4

(2 points)

The circuit C_1 describes the layout of a hardware adder that stores a 2-bit binary number represented by the registers r_0 and r_1 . In each cycle, the value of x is added to the currently stored value; y is used as the carry bit:

- Give the transition system representation TS_1 of the circuit C_1 .

b) Let TS_2 be the transition system of the circuit C_2 . Outline the transition system $TS_1 \otimes TS_2$.

Remark: The operator \otimes denotes the synchronous product in which both systems always perform one step synchronously.