

Introduction to Model Checking

Winter term 2011/2012

– Series 2 –

Hand in on November 2nd before the exercise class.

Exercise 1

(3 points)

a) Show that, in general, the handshaking \parallel_H operator is not associative, i.e.

$$(T_1 \parallel_H T_2) \parallel_H T_3 \neq T_1 \parallel_H (T_2 \parallel_H T_3)$$

b) Show that the handshaking operator \parallel that forces transition systems to synchronize over their common actions is associative. That is, show that

$$(T_1 \parallel T_2) \parallel T_3 = T_1 \parallel (T_2 \parallel T_3)$$

where T_1, T_2, T_3 are arbitrary transition systems.

Exercise 2

(4 points)

In channel systems, values can be transferred from one process to another process. According to the lecture, the set of transitions of a program graph $PG = (Loc, Act, Effect, \rightarrow, Loc_0, g_0)$ over $(Var, Chan)$ is defined as

$$\rightarrow \subseteq Loc \times (Cond(Var) \times Act) \times Loc \cup Loc \times Comm \times Loc$$

where $Comm = \{c!v, c?x \mid c \in Chan, v \in \text{dom}(c), x \in Var \text{ with } \text{dom}(x) \supseteq \text{dom}(c)\}$.

Here we consider two extensions to this definition:

- The transitions modelling communication between processes (labeled by $c!v$ and $c?x$) should be guarded.
- Additionally, we do not want to confine ourselves to transferring values. Therefore we extend our definition s.t. we can transfer expressions.

(a) Give a formal definition of the transition system semantics of a channel system $CS = [PG_1 | \dots | PG_n]$ with guarded transitions of the form

$$l \xrightarrow{g:c!v} l' \quad \text{and} \quad l \xrightarrow{g:c?x} l'.$$

(b) Now, extend your definition from part (a) in order to transfer expressions (instead of values) by transitions of the form $l \xrightarrow{g:clex} l'$. For simplicity, we assume that the type of the expression always corresponds to the domain of the channel.

Hint: To refer to the actual value of an expression ex , you may use the notation $\eta(ex)$.

Exercise 3

(4 points)

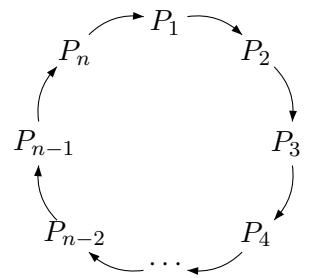
Consider the following leader election algorithm: For $n \in \mathbb{N}$, n processes P_1, \dots, P_n are located in a ring topology where each process is connected by an unidirectional channel to its neighbour as outlined on the right.

To distinguish the processes, each process is assigned a unique identifier $id \in \{1, \dots, n\}$. The aim is to elect the process with the highest identifier as the leader within the ring. Therefore each process executes the following algorithm:

```

send (id); initially set to process' id
while (true) do
  receive (m);
  if (m == id) then stop; process is the leader
  if (m > id) then send (m); forward identifier
od

```



- a) Model the leader election protocol for n processes as a channel system.
- b) Give an initial execution fragment of $TS([P_1|P_2|P_3])$ such that at least one process has executed the **send**-statement within the body of the **while**-loop.

Assume for $1 \leq i \leq 3$, that process P_i has identifier $id_i = i$.