

Introduction to Model Checking

Winter term 2011/2012

– Series 3 –

Hand in on November 9th before the exercise class.

Exercise 1

(3 points)

Consider the set AP of atomic propositions defined by $AP = \{ x = 0, x > 1 \}$ and consider a nonterminating sequential computer program P that manipulates the variable x . Formulate the following informally stated properties as LT properties:

- (a) false
- (b) initially x is equal to zero
- (c) initially x differs from zero
- (d) initially x is equal to zero, but at some point x exceeds one
- (e) x exceeds one only finitely many times
- (f) x exceeds one infinitely often
- (g) the value of x alternates between zero and two
- (h) true

Determine which of the provided LT properties are safety properties. Justify your answers.

Exercise 2

(2 points)

Give an algorithm (in pseudocode) for invariant checking such that in case the invariant is refuted, a *minimal* counterexample, i.e., a counterexample of minimal length, is provided as an error indication.

Exercise 3

(4 points)

Recall the definition of AP -deterministic transition systems (cf. Series 1, Exercise 1). Let T and T' be transition systems with the same set of atomic propositions AP . Prove the following relationship between trace inclusion and finite trace inclusion:

- (a) For AP -deterministic T and T' :

$$\text{Traces}(T) = \text{Traces}(T') \text{ if and only if } \text{Traces}_{fin}(T) = \text{Traces}_{fin}(T').$$

- (b) Give concrete examples of T and T' where at least one of the transition systems is not AP -deterministic, and

$$\text{Traces}(T) \not\subseteq \text{Traces}(T') \text{ and } \text{Traces}_{fin}(T) = \text{Traces}_{fin}(T').$$