

Introduction to Model Checking

Winter term 2011/2012

– Series 6 –

Hand in on November 30th before the exercise class.

Exercise 1

(1 points)

Find nondeterministic Büchi automata that accept the following ω regular languages:

a) $L_1 = \{\sigma \in \{A, B\}^\omega \mid \sigma \text{ contains } ABA \text{ infinitely often, but } AA \text{ only finitely often}\}$

Exercise 2

(3 points)

Provide NBA \mathcal{A}_1 and \mathcal{A}_2 for the languages given by the expressions $(AC + B)^*B^\omega$ and $(B^*AC)^\omega$ and apply the product construction (using GNBA) to obtain an NBA \mathcal{A} with $\mathcal{L}_\omega(\mathcal{A}) = \mathcal{L}_\omega(\mathcal{A}_1) \cap \mathcal{L}_\omega(\mathcal{A}_2)$. Justify, why $\mathcal{L}_\omega(\mathcal{G}) = \emptyset$ where \mathcal{G} denotes the GNBA accepting the intersection.

Exercise 3

(2 points)

Provide an example for a liveness property that is not ω -regular. Justify your answer.

Exercise 4

(4 points)

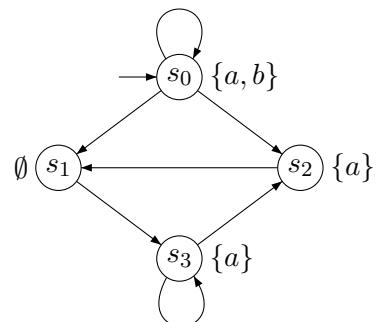
We consider model checking of the ω -regular properties P_1 and P_2 which are defined over the set $AP = \{a, b\}$ of atomic propositions:

P_1 := “if a holds infinitely often, then b holds infinitely often”

P_2 := “eventually a state is reached where

a holds and in the next state a holds again”

Further, our model is represented by the transition system TS which is given on the right. We want to check whether $TS \models P_i$ for $i = 1, 2$ using the nested depth-first search algorithm from the lecture. Therefore proceed as follows:



a) Derive a NBA \mathcal{A}_i for the complement \overline{P}_i of P_i for $i = 1, 2$.

More precisely, for \mathcal{A}_i it must hold $\mathcal{L}_\omega(\mathcal{A}_i) = \overline{P}_i$.

Hint: Four, respectively three states suffice. Derive the automata directly.

b) Outline the reachable fragment of the product transition system $TS \otimes \mathcal{A}_i$.

c) Check persistence (based on SCC analysis) on $TS \otimes \mathcal{A}_i$.

d) Decide if the property P_i is satisfied and provide a counterexample in case that $TS \not\models P_i$.