

Introduction to Model Checking
Winter term 2011/2012
– Series 7 –

 Hand in on December 7th before the exercise class.

Exercise 1

(3 points)

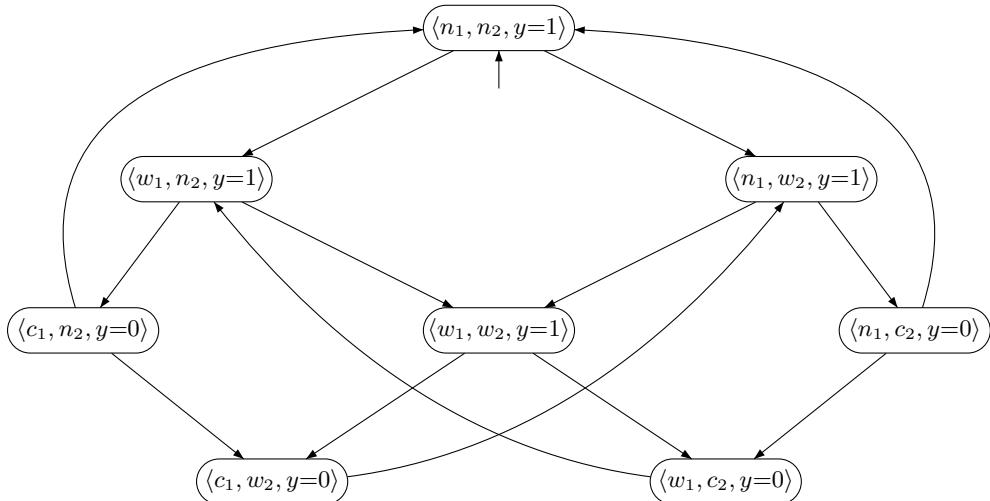


Figure 1: Mutual exclusion with semaphore (transition system representation).

Consider the transition system T_{Sem} for mutual exclusion with a semaphore. Let P_{live} be the following ω -regular property over $AP = \{ wait_1, crit_1 \}$:

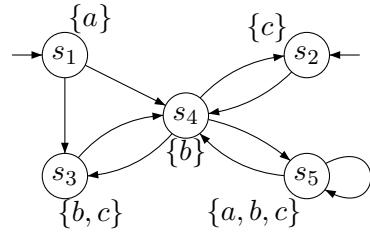
“whenever process 1 is in its waiting location then it will eventually enter its critical section”

- Introduce the necessary labels in T_{Sem} .
- Depict an NBA \bar{A} for the complement property $\bar{P}_{live} = (2^{AP})^\omega \setminus P_{live}$.
- Check whether $T_{Sem} \models P_{live}$. Therefore:
 - Depict the reachable fragment of the product $T_{Sem} \otimes \bar{A}$
 - Sketch the main steps of the nested depth-first search applied to $T_{Sem} \otimes \bar{A}$ for the persistence property “eventually forever $\neg F$ ” where F is the acceptance set of \bar{A} . In case the property is refuted, which counterexample is generated?

Exercise 2

(6 × 0.5 = 3 points)

Consider the transition system TS over the set of atomic propositions $AP = \{a, b, c\}$:



Decide for each of the LTL formulas φ_i below, whether $TS \models \varphi_i$ holds. Justify your answers!
 If $TS \not\models \varphi_i$, provide a path $\pi \in Paths(TS)$ such that $\pi \not\models \varphi_i$.

$$\varphi_1 = \Diamond \Box c$$

$$\varphi_4 = \Box a$$

$$\varphi_2 = \Box \Diamond c$$

$$\varphi_5 = a \mathsf{U} \Box (b \vee c)$$

$$\varphi_3 = \bigcirc \neg c \rightarrow \bigcirc \bigcirc c$$

$$\varphi_6 = (\bigcirc \bigcirc b) \mathsf{U} (b \vee c)$$

Exercise 3

(4 \times 1 = 4 points)

Prove or disprove the following equivalences of LTL-formulas:

$$\Box \varphi \rightarrow \Diamond \psi \equiv \varphi \mathsf{U} (\psi \vee \neg \varphi)$$

$$\Diamond \Box \varphi \rightarrow \Box \Diamond \psi \equiv \Box (\varphi \mathsf{U} (\psi \vee \neg \varphi))$$

$$\Box \Diamond \varphi \rightarrow \Box \Diamond \psi \equiv \Box (\varphi \rightarrow \Diamond \psi)$$

$$\Diamond (\varphi \mathsf{U} \psi) \equiv \Diamond \psi$$