

Introduction to Model Checking
Winter term 2011/2012**– Series 9 –**

Hand in on December 21th before the exercise class.

Exercise 1**(4 points)**

Consider an elevator system that services $N > 0$ floors numbered 0 through $N - 1$. There is an elevator door at each floor with a call-button and an indicator light that signals whether or not the elevator has been called. For simplicity consider $N = 4$. Present a set of atomic propositions - try to minimize the number of propositions - that are needed to describe the following properties of the elevator system as LTL formula and give the corresponding LTL formulae:

- The doors are “safe”, i.e., a floor door is never open if the elevator is not present at the given floor.
- A requested floor will be served sometime.
- Again and again the elevator returns to floor 0.
- When the top floor is requested, the elevator serves it immediately and does not stop on the way there.

Exercise 2**(2 + 2 + 2 points)**

Let φ and ψ be LTL formulae. Consider the following new operators:

- “At next” $\varphi N \psi$: at the next time where ψ holds, φ also holds.
- “While” $\varphi W \psi$: φ holds at least as long as ψ does.
- “Before” $\varphi B \psi$: if ψ holds sometime, φ does so before.

Make the definitions of these informally explained operators precise by providing LTL formulae that formalize their intuitive meanings.