

Introduction to Model Checking

Winter term 2011/2012

– Series 10 –

Hand in on January 11th before the exercise class.

Exercise 1

(2 points)

Provide a non-deterministic Büchi Automaton \mathcal{A}_i for each of the following LTL-formulas φ_i such that $\mathcal{L}_\omega(\mathcal{A}_i) = \text{Words}(\varphi_i)$:

- (a) $\varphi_1 = \square(a \vee \neg \bigcirc b)$
- (b) $\varphi_2 = \diamond a \vee \square \diamond(a \leftrightarrow b)$
- (c) $\varphi_3 = \bigcirc \bigcirc(a \vee \diamond \square b)$

Hint: You can infer the NBA directly, i.e. without the algorithm given in the lecture.

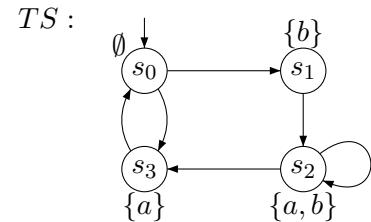
Exercise 2

(6 points)

We consider the LTL formula $\varphi = \square(a \rightarrow (\neg b \mathbf{U}(a \wedge b)))$ over the set $AP = \{a, b\}$ of atomic propositions and want to check $TS \models \varphi$ wrt. the transition system outlined on the right.

a) To check $TS \models \varphi$, convert $\neg \varphi$ into an equivalent LTL-formula ψ which is constructed according to the following grammar:

$$\varphi ::= \text{true} \mid \text{false} \mid a \mid b \mid \varphi \wedge \varphi \mid \neg \varphi \mid \bigcirc \varphi \mid \varphi \mathbf{U} \varphi.$$



Then construct $\text{closure}(\psi)$.

b) Give the elementary sets wrt. $\text{closure}(\psi)$!

c) Construct the GNBA \mathcal{G}_ψ by providing its initial states, its acceptance set and its transition relation.
 Use the algorithm given in the lecture.
Hint: It suffices to provide the transition relation as a table.

d) Now, construct an NBA $\mathcal{A}_{\neg \varphi}$ **directly** from $\neg \varphi$, i.e. without relying on \mathcal{G}_ψ .
Hint: Four states suffice!

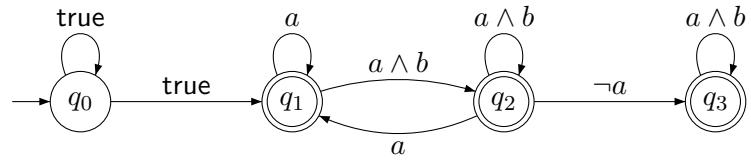
e) Construct $TS \otimes \mathcal{A}_{\neg \varphi}$.

f) Use the Nested DFS algorithm from the lecture to check $TS \models \varphi$. Therefore sketch the algorithm's main steps and interpret its outcome!

Exercise 3

(2 points)

Consider the GNBA \mathcal{G} over the alphabet $\Sigma = 2^{\{a,b\}}$ and the set $\mathcal{F} = \{\{q_1, q_3\}, \{q_2\}\}$ of acceptance sets:



- Provide an LTL formula φ such that $Word(\varphi) = \mathcal{L}_\omega(\mathcal{G})$. Justify your answer!
- Depict an NBA \mathcal{A} with $\mathcal{L}_\omega(\mathcal{A}) = \mathcal{L}_\omega(\mathcal{G})$.