

Introduction to Model Checking

Winter term 2011/2012

– Series 11 –

Hand in on January 18th before the exercise class.

Exercise 1

(2 points)

Let φ be an LTL-formula over a set of atomic propositions AP . Prove the following property:
 For all elementary sets $B \subseteq \text{closure}(\varphi)$ and for all $B' \in \delta(B, B \cap AP)$, it holds:

$$\neg \bigcirc \psi \in B \iff \psi \notin B'.$$

Exercise 2

(4 points)

Express the following properties as CTL formulas over $AP = \{a, b, c\}$ and provide a justification. For more complicated formulas, also comment on their subformulas!

- a) There exists a path on which for every state s it holds: there exists a path which starts in s and on which eventually a holds and in the next state, $\neg a$ holds.
- b) There exists a state s for which it holds: a is true and on all paths starting from s , c holds as long as b does not hold.
- c) On every path it holds for every state: a is valid iff (b is valid and in the previous state, c is valid).
Hint: Note that this excludes the case where a is valid at the beginning.

Exercise 3

(2 points)

Provide two finite transition systems TS_1 and TS_2 (without terminal states, and over the same set of atomic propositions) and a CTL formula Φ such that $\text{Traces}(TS_1) = \text{Traces}(TS_2)$ and $TS_1 \models \Phi$, but $TS_2 \not\models \Phi$.

Exercise 4

(1 + 1 points)

Prove or disprove the following implications:

- (a) Let $\Phi_1 = \forall \Diamond a \vee \forall \Diamond b$ and $\Phi_2 = \forall \Diamond(a \vee b)$.
 Prove or disprove the following implications: $\Phi_1 \implies \Phi_2$ and $\Phi_2 \implies \Phi_1$.
- (b) Now consider $\Psi_1 = \exists(a \bigcirc \exists(b \bigcirc c))$ and $\Psi_2 = \exists(\exists(a \bigcirc b) \bigcirc c)$.
 Again, prove or disprove $\Psi_1 \implies \Psi_2$ and $\Psi_2 \implies \Psi_1$.