

Introduction to Model Checking

Winter term 2013/2014

– Series 3 –

Hand in on November 13th before the exercise class or in the box in front of the chair's secretary's office.

Exercise 1

(4 points)

Consider the set AP of atomic propositions defined by $AP = \{x = 0, x > 1\}$ and consider a non-terminating sequential computer program P that manipulates the variable x . Formulate the following informally stated properties as LT properties:

- (a) false
- (b) initially x is equal to zero
- (c) initially x differs from zero
- (d) initially x is equal to zero, but at some point x exceeds one
- (e) x exceeds one only finitely many times
- (f) x exceeds one infinitely often
- (g) the value of x alternates between zero and one
- (h) true

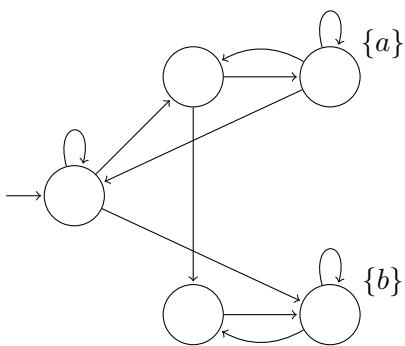
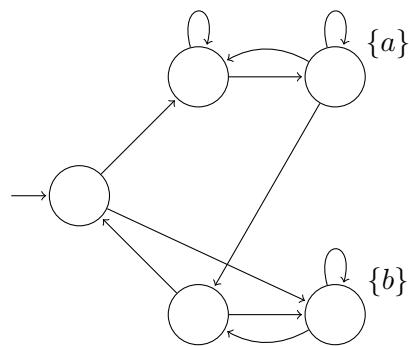
Determine which of the provided LT properties are safety properties. Justify your answers.

Exercise 2

(2 points)

Consider the two transition systems below. Show that they are not finite trace equivalent!

Hint: slide 80, lecture 6



Exercise 3

(4 points)

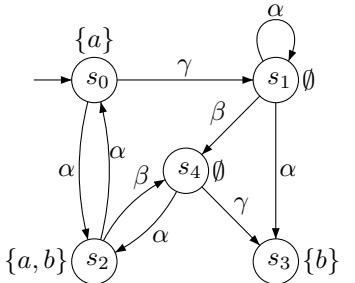
For this exercise we give the following definition:

Definition 1. Deterministic Transition System

Let $T = (S, Act, \rightarrow, I, AP, L)$ be a transition system.

- T is called *action-deterministic* if $|I| \leq 1$ and $|Post(s, \alpha)| \leq 1$ for all states s and actions α .
- T is called *AP-deterministic* if $|I| \leq 1$ and $|Post(s) \cap \{s' \in S \mid L(s') = A\}| \leq 1$ for all states s and $A \in 2^{AP}$.

■



Now let TS be the transition system depicted on the right.

a) Decide whether TS is an *AP-deterministic* or an *action-deterministic* transition system. Justify your answer!

Let T and T' be transition systems with the same set of atomic propositions AP . Prove the following relationship between trace inclusion and finite trace inclusion:

b) For *AP-deterministic* T and T' :

$$Traces(T) = Traces(T') \text{ if and only if } Traces_{fin}(T) = Traces_{fin}(T').$$

c) Give concrete examples of T and T' where at least one of the transition systems is not *AP-deterministic*, and

$$Traces(T) \not\subseteq Traces(T') \text{ and } Traces_{fin}(T) = Traces_{fin}(T').$$