

Introduction to Model Checking

Winter term 2013/2014

– Series 5 –

Hand in on November 27th before the exercise class or in the box in front of the chair's secretary's office.

Exercise 1

(2 points)

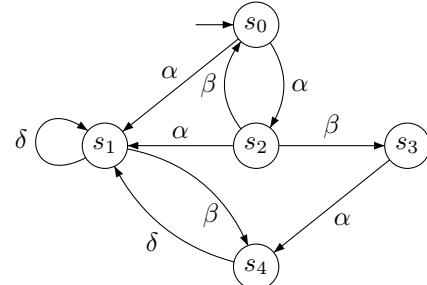
Let $AP = \{a, b\}$ and let P be the LT property of all infinite words $\sigma = A_0A_1A_2 \dots \in (2^{AP})^\omega$ such that there exists $n \geq 0$ with $a \in A_i$ for $0 \leq i < n$, $\{a, b\} = A_n$ and $b \in A_j$ for infinitely many $j \geq 0$. Provide a decomposition $P = P_{\text{safe}} \cap P_{\text{live}}$ into a safety and a liveness property.

Exercise 2

(3 points)

Consider the transition system TS on the right (where atomic propositions are omitted). Decide which of the following fairness assumptions \mathcal{F}_i are realizable for TS . Justify your answers!

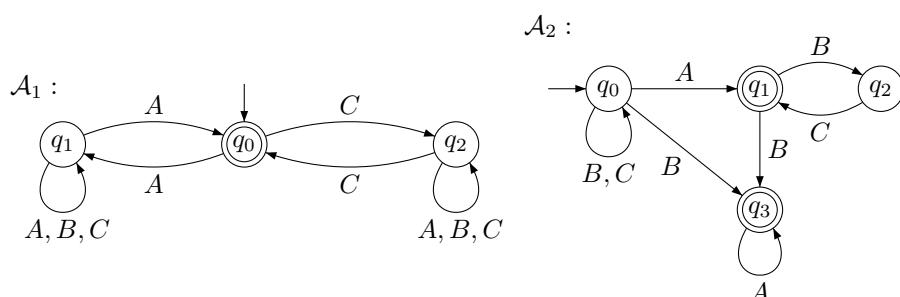
- a) $\mathcal{F}_1 = (\{\{\alpha\}\}, \{\{\delta\}\}, \{\{\alpha, \beta\}\})$
- b) $\mathcal{F}_2 = (\{\{\alpha, \delta\}\}, \{\{\alpha, \beta\}\}, \{\{\delta\}\})$
- c) $\mathcal{F}_3 = (\{\{\alpha, \delta\}, \{\beta\}\}, \{\{\alpha, \beta\}\}, \{\{\delta\}\})$



Exercise 3

(2 points)

- a) Find nondeterministic Büchi automata that accept the following ω -regular languages:
 - (a) $L_1 = \{\sigma \in \{A, B\}^\omega \mid \sigma \text{ contains } ABA \text{ infinitely often, but } AA \text{ only finitely often}\}$
 - (b) $L_2 = \mathcal{L}_\omega((AB + C)^*((AA + B)C)^\omega + (A^*C)^\omega)$
- b) Consider the following NBA \mathcal{A}_1 and \mathcal{A}_2 over the alphabet $\Sigma = \{A, B, C\}$:

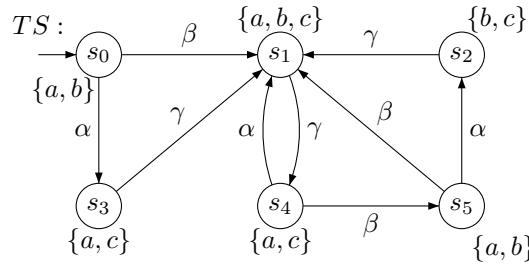


Find ω -regular expressions for the languages accepted by \mathcal{A}_1 and \mathcal{A}_2 , respectively.

Exercise 4

(3 points)

Consider the following transition system TS



and the regular safety property

$P_{safe} =$ “always if a is valid and $b \wedge \neg c$ was valid somewhere before,
then neither a nor b holds thereafter at least until c holds”

As an example, it holds:

$$\begin{aligned}
 \{b\} \emptyset \{a, b\} \{a, b, c\} &\in pref(P_{safe}) \\
 \{a, b\} \{a, b\} \emptyset \{b, c\} &\in pref(P_{safe}) \\
 \{b\} \{a, c\} \{a\} \{a, b, c\} &\in BadPref(P_{safe}) \\
 \{b\} \{a, c\} \{a, c\} \{a\} &\in BadPref(P_{safe})
 \end{aligned}$$

Questions:

- Define an NFA \mathcal{A} such that $\mathcal{L}(\mathcal{A}) = MinBadPref(P_{safe})$.
- Decide whether $TS \models P_{safe}$ using the $TS \otimes \mathcal{A}$ construction.
Provide a counterexample if $TS \not\models P_{safe}$.