

Introduction to Model Checking

Winter term 2013/2014

– Series 6 –

Hand in on December 4th before the exercise class or in the box in front of the chair's secretary's office.

Exercise 1

(3 points)

Provide NBA \mathcal{A}_1 and \mathcal{A}_2 for the languages given by the expressions $(AC + B)^*B^\omega$ and $(B^*AC)^\omega$ and apply the product construction (using GNBA) to obtain an NBA \mathcal{A} with $\mathcal{L}_\omega(\mathcal{A}) = \mathcal{L}_\omega(\mathcal{A}_1) \cap \mathcal{L}_\omega(\mathcal{A}_2)$. Justify, why $\mathcal{L}_\omega(\mathcal{G}) = \emptyset$ where \mathcal{G} denotes the GNBA accepting the intersection.

Exercise 2

(3 points)

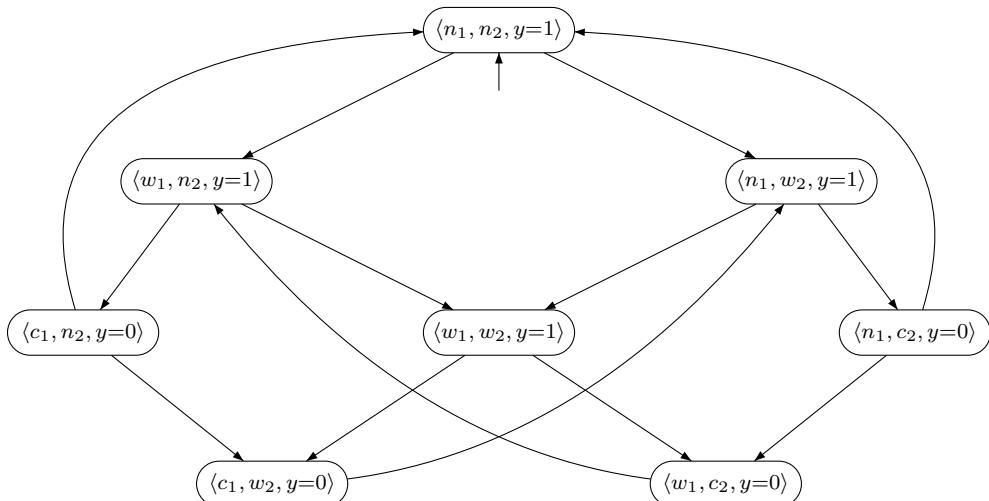


Figure 1: Mutual exclusion with semaphore (transition system representation).

Consider the transition system T_{Sem} for mutual exclusion with a semaphore. Let P_{live} be the following ω -regular property over $AP = \{ \text{wait}_1, \text{crit}_1 \}$:

“whenever process 1 is in its waiting location then it will eventually enter its critical section”

- a) Introduce the necessary labels in T_{Sem} .
- b) Depict an NBA $\bar{\mathcal{A}}$ for the complement property $\bar{P}_{live} = (2^{AP})^\omega \setminus P_{live}$.
- c) Check whether $T_{Sem} \models P_{live}$. Therefore:
 - (i) Depict the reachable fragment of the product $T_{Sem} \otimes \bar{\mathcal{A}}$
 - (ii) Sketch the main steps of the nested depth-first search applied to $T_{Sem} \otimes \bar{\mathcal{A}}$ for the persistence property “eventually forever $\neg F$ ” where F is the acceptance set of $\bar{\mathcal{A}}$. In case the property is refuted, which counterexample is generated?

Exercise 3**(4 points)**

Show how the following pairs of LTL-formulas are related, i.e. whether they are equivalent, one implies the other, or they are incomparable:

$$\Box\varphi \rightarrow \Diamond\psi \text{ and } \varphi U(\psi \vee \neg\varphi)$$

$$\Box\Diamond\varphi \rightarrow \Box\Diamond\psi \text{ and } \Box(\varphi \rightarrow \Diamond\psi)$$

$$\Diamond\Box\varphi \rightarrow \Box\Diamond\psi \text{ and } \Box(\varphi U(\psi \vee \neg\varphi))$$

$$\Diamond(\varphi U\psi) \text{ and } \Diamond\psi$$