

Introduction to Model Checking

Winter term 2013/2014

– Series 8 –

Hand in on December 18th before the exercise class or in the box in front of the chair's secretary's office.

Exercise 1 (2 points)

Consider a lift system that services $N > 0$ floors numbered 0 through $N - 1$. There is a lift door at each floor with a call-button and an indicator light that signals whether or not the lift has been called. In the lift cabin there are N send-buttons (one per floor) and N indicator lights that inform to which floor(s) is sent.

For simplicity consider $N = 4$. Present a set of atomic propositions – try to minimize the number of propositions – that are needed to describe the following properties of the lift system as LTL-formulas and give the corresponding LTL-formulas:

- (a) The doors are “safe”, i.e., a floor door is never open if the cabin is not present at a given floor.
- (b) A requested floor will be served sometime.
- (c) Again and again the lift returns to floor 0.
- (d) When the top floor is requested, the lift serves it immediately and does not stop on the way there.

Exercise 2 (2 points)

Provide a non-deterministic Büchi Automaton \mathcal{A}_i for each of the following LTL-formulas φ_i such that $\mathcal{L}_\omega(\mathcal{A}_i) = \text{Words}(\varphi_i)$:

- (a) $\varphi_1 = \square (a \vee \neg \bigcirc b)$
- (b) $\varphi_2 = \diamond a \vee \square \diamond (a \leftrightarrow b)$
- (c) $\varphi_3 = \bigcirc \bigcirc (a \vee \diamond \square b)$

Hint: You can infer the NBA directly, i.e. without the algorithm given in the lecture.

Exercise 3 (2 points)

Let φ be an LTL-formula over a set of atomic propositions AP . Prove the following property:
 For all elementary sets $B \subseteq \text{closure}(\varphi)$ and for all $B' \in \delta(B, B \cap AP)$, it holds:

$$\neg \bigcirc \psi \in B \iff \psi \notin B'.$$

Exercise 4 (4 points)

Consider the LTL-formula $\varphi = a \mathsf{U} \bigcirc a$ over the set of atomic propositions $AP = \{a\}$. Construct an equivalent GNBA \mathcal{G} (i.e. $\mathcal{L}_\omega(\mathcal{G}) = \text{Words}(\varphi)$) according to the algorithm given in the lecture (slides from LTLMC 3.2-39 onwards).