

Introduction to Model Checking

Winter term 2013/2014

– Series 12 –

Hand in on January 29th before the exercise class or in the box in front of the chair's secretary's office.

Exercise 1

(4 points)

Consider the fragment ECTL of CTL which consists of formulas built according to the following grammar:

$$\begin{aligned}\Phi ::= & a \mid \neg a \mid \Phi \wedge \Phi \mid \exists \varphi \\ \varphi ::= & \bigcirc \Phi \mid \square \Phi \mid \Phi \cup \Phi\end{aligned}$$

Therefore, ECTL-formulas are built by atomic propositions, negated atomic propositions, the boolean connective \wedge and the path quantifier \exists together with the modalities \bigcirc , \square and \cup .

For two transition systems $TS_1 = (S_1, Act, \rightarrow_1, I_1, AP, L_1)$ and $TS_2 = (S_2, Act, \rightarrow_2, I_2, AP, L_2)$, we define $TS_1 \subseteq TS_2$ iff $S_1 \subseteq S_2$, $\rightarrow_1 \subseteq \rightarrow_2$, $I_1 = I_2$ and $L_1(s) = L_2(s)$ for all $s \in S_1$.

(a) Prove, that for all ECTL-formulas Φ and all transition systems TS_1, TS_2 with $TS_1 \subseteq TS_2$, it holds:

$$TS_1 \models \Phi \implies TS_2 \models \Phi.$$

(b) Give a CTL-formula which is not equivalent to any other ECTL-formula. Justify your answer!

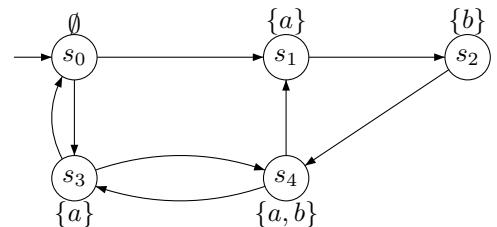
Exercise 2

(3 points)

Consider the CTL-formula $\Phi = \forall \square (a \rightarrow \forall \diamond (b \wedge \neg a))$ together with the following CTL fairness assumption

$$\begin{aligned}fair = & \square \diamond \forall \bigcirc (a \wedge \neg b) \rightarrow \square \diamond \forall \bigcirc (b \wedge \neg a) \\ & \wedge \diamond \square \exists \diamond b \rightarrow \square \diamond b.\end{aligned}$$

Check that $TS \models_{fair} \Phi$!



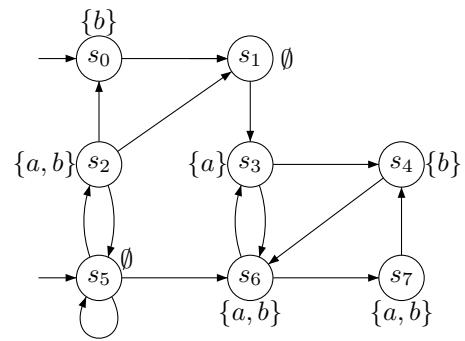
Exercise 3

(3 points)

Consider the CTL*-formula (over $AP = \{a, b\}$)

$$\Phi = \forall \diamond \square \exists \bigcirc (a \cup \exists \square b)$$

and the transition system TS outlined below:



Apply the CTL* Model Checking Algorithm to compute $Sat(\Phi)$ and decide whether $TS \models \Phi$.
Hint: You may infer the satisfaction sets for LTL formulas directly.