

Modeling Concurrent and Probabilistic Systems

Winter Term 07/08

– Series 1 –

Hand in until October 26 before the exercise class.

Exercise 1 (3 points)

Construct the derivation tree for the τ -step in the LTS of the parallel two place buffer.

Exercise 2 (4 points)

Give the LTS of the following process definitions:

- a) $A(a, b, c) = a.b.c.A(a, b, c) + a.\text{nil}$
- b) $B(a) = a.\overline{a}.\text{nil} + a.\text{nil}$
- c) $C(a) = a.C(a) \parallel D$
 $D = D$
- d) $E = \text{new } a \ (a.\text{nil} \parallel F(a))$
 $F(a) = \overline{a}.F(a)$

Exercise 3 (4 points)

Which of the following process definitions induce an infinite LTS? Justify your answers!

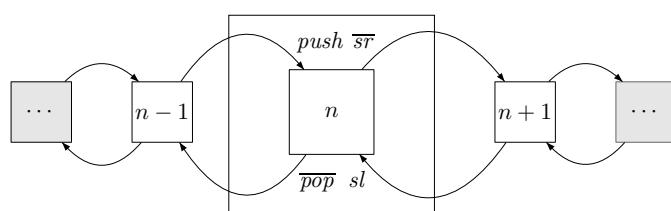
- a) $A = A$
- b) $B(a) = (B(a) \parallel B(a)) + a.\text{nil}$
- c) $C(a) = (C(a) + C(a)) + a.\text{nil}$
- d) $D(a, b) = a.(D(a, b) \parallel b.\text{nil})$

Exercise 4 (3* points)

The aim of this exercise is to infer a finite stack data structure, i.e. a bounded LIFO queue:

To this aim, consider the following process definition of a shift register which stores any value received via actions push (or sl) and shifts its old value to the shift register on the right (on the left, resp.) via action \overline{sr} (resp. \overline{pop}). Let $\vec{a} = (\text{push}, \text{pop}, sl, sr)$ and define

$$\begin{aligned} E(\vec{a}) &= \text{push}.F(\vec{a}) + sl.F(\vec{a}) \\ F(\vec{a}) &= \overline{\text{pop}}.E(\vec{a}) + \text{push}.\overline{sr}.F(\vec{a}) \end{aligned}$$



Derive a process definition of a stack for at most three elements by appropriately composing three instances of the shift register! Construct the derivation tree of the push -transition of the empty stack!

Hint: You do not have to consider cases where the stack's capacity is exceeded!

*Additional exercise with extra points only.