

Modeling Concurrent and Probabilistic Systems

Winter Term 07/08

– Series 3 –

Hand in until November 09 before the exercise class.

Exercise 1

(4 + 1 points)

In analogy to the buffer, this exercise deals with the *semaphore* data structure which can be regarded as a buffer for identical entries.

a) An n -ary semaphore ($n \geq 1$) is given by the following specification:

$$\begin{aligned} Sem_0^n(get, put) &= get.Sem_1^n(get, put) \\ Sem_k^n(get, put) &= get.Sem_{k+1}^n(get, put) + put.Sem_{k-1}^n(get, put) \quad (0 < k < n) \\ Sem_n^n(get, put) &= put.Sem_{n-1}^n(get, put). \end{aligned}$$

Prove that it can also be specified by composing n parallel instances of a unary semaphore:

$$\begin{aligned} S^n(get, put) &= \underbrace{S_0(get, put) \parallel S_0(get, put) \parallel \cdots \parallel S_0(get, put)}_{n \text{ times}} \\ S_0(get, put) &= get.S_1(get, put) \\ S_1(get, put) &= put.S_0(get, put). \end{aligned}$$

To this aim, show that $Sem_0^n \sim S^n$ by constructing an appropriate strong bisimulation relation.

b) Show that the two variants of the two place buffer given in the lecture are not strongly bisimilar.

Exercise 2

(4 points)

Prove or disprove the following strong bisimulation equivalences between process terms where $P, Q, R \in \text{Proc}$ and $a, b \in A$:

a) $P + \text{nil} \sim P$	b) $P + P \sim P$
c) $P \parallel (Q \parallel R) \sim (P \parallel Q) \parallel R$	d) $P \parallel P \sim P$

Exercise 3

(3 points)

a) Show that the car locking system (cf. Exercise 2.1) as presented in the exercise class has a deadlock.
 b) Develop a deadlock free specification of the system.

Exercise 4

(1+3 points)

In order to enrich the CCS by a sequential composition operator, we define *well terminating* processes: A process $P \in \text{Proc}$ is *well terminating* if for every $P' \in \text{Proc}$ with $P \rightarrow^* P'$,

- $P' \xrightarrow{\text{done}}$ is not possible and
- if $P' \xrightarrow{\text{done}}$, then $P' \sim \overline{\text{done}}.\text{nil}$.

In other words, the output action $\overline{\text{done}}$ signals the (successful) termination of P .

- Show that nil is a well terminating process, and that the set of well terminating processes is closed under action prefixing, nondeterministic choice and restriction.
- Give appropriate CCS definitions for the following processes and operators:

Done The process which is able to execute just one $\overline{\text{done}}$ action.

Seq The process $P \text{ Seq } Q$ denotes the sequential execution of P and Q , assuming that P is well terminating. Moreover $P \text{ Seq } Q$ should be well terminating if both P and Q are.

Par The process $P \text{ Par } Q$ denotes the parallel execution of P and Q . It should be well terminating if both P and Q are.