
Modeling Concurrent and Probabilistic Systems

Lecture 1: Introduction

Joost-Pieter Katoen Thomas Noll

Software Modeling and Verification Group

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/mcps07/

Winter Semester 2007/08

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/mcps07/


Outline

1 Preliminaries

2 Introduction

3 Syntax of CCS

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 2



People

1st part: CCS 2nd part: Probabilistic Models

Lectures Thomas Noll Joost-Pieter Katoen
<noll> <katoen>

Exercises Martin Neuhäußer Tingting Han
<neuhaeusser> <tingting.han>

Assistant Ulrich Schmidt-Goertz
<ulrich.schmidt-goertz@gmx.de>

(add “@cs.rwth-aachen.de” to e-mail addresses)

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 3

<noll>
<katoen>
<neuhaeusser>
<tingting.han>
<ulrich.schmidt-goertz@gmx.de>
@cs.rwth-aachen.de


Target Audience

Diploma programme (Informatik)

Theoretische Informatik
Vertiefungsfach Formale Methoden, Programmiersprachen und
Softwarevalidierung

Master programme (Software Systems Engineering)

Theoretical CS
Specialization Formal Methods, Programming Languages and
Software Validation

In general:

interest in formal models for software systems
application of mathematical reasoning methods

Expected: basic knowledge in

formal languages and automata theory
mathematical logic
probability theory

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 4



Target Audience

Diploma programme (Informatik)

Theoretische Informatik
Vertiefungsfach Formale Methoden, Programmiersprachen und
Softwarevalidierung

Master programme (Software Systems Engineering)

Theoretical CS
Specialization Formal Methods, Programming Languages and
Software Validation

In general:

interest in formal models for software systems
application of mathematical reasoning methods

Expected: basic knowledge in

formal languages and automata theory
mathematical logic
probability theory

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 4



Organization

Schedule:

Lecture Tue 14:00–15:30 AH 2 (starting October 16)
Lecture Thu 13:30–15:00 AH 1 (starting November 8)
Exercise class Fri 10:00–11:30 AH 2 (starting October 26)

see web page for single dates

1st assignment sheet: Fri Oct. 19 on web

Work on assignments in groups of three

Examination (8 ECTS credit points):
written or oral (depending on number of candidates);
date: February 2008

Admission requires at least 50% of the points in the exercises

Solutions to exercises and exam in English or German

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 5



Organization

Schedule:

Lecture Tue 14:00–15:30 AH 2 (starting October 16)
Lecture Thu 13:30–15:00 AH 1 (starting November 8)
Exercise class Fri 10:00–11:30 AH 2 (starting October 26)

see web page for single dates

1st assignment sheet: Fri Oct. 19 on web

Work on assignments in groups of three

Examination (8 ECTS credit points):
written or oral (depending on number of candidates);
date: February 2008

Admission requires at least 50% of the points in the exercises

Solutions to exercises and exam in English or German

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 5



Organization

Schedule:

Lecture Tue 14:00–15:30 AH 2 (starting October 16)
Lecture Thu 13:30–15:00 AH 1 (starting November 8)
Exercise class Fri 10:00–11:30 AH 2 (starting October 26)

see web page for single dates

1st assignment sheet: Fri Oct. 19 on web

Work on assignments in groups of three

Examination (8 ECTS credit points):
written or oral (depending on number of candidates);
date: February 2008

Admission requires at least 50% of the points in the exercises

Solutions to exercises and exam in English or German

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 5



Organization

Schedule:

Lecture Tue 14:00–15:30 AH 2 (starting October 16)
Lecture Thu 13:30–15:00 AH 1 (starting November 8)
Exercise class Fri 10:00–11:30 AH 2 (starting October 26)

see web page for single dates

1st assignment sheet: Fri Oct. 19 on web

Work on assignments in groups of three

Examination (8 ECTS credit points):
written or oral (depending on number of candidates);
date: February 2008

Admission requires at least 50% of the points in the exercises

Solutions to exercises and exam in English or German

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 5



Outline

1 Preliminaries

2 Introduction

3 Syntax of CCS

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 6



Motivation

Goal:

describing and analyzing the behavior of
concurrent and/or probabilistic systems

Motivation:

supporting the design phase

=⇒ “Programming Concurrent Systems”
synchronization, scheduling, fairness, absence of deadlocks, ...

applying formal analysis methods

=⇒ “Performance Modelling”
queue throughput, response time in real-time systems, ...

verifying correctness properties

=⇒ “Model Checking”
validation of mutual exclusion, fairness, no deadlocks, ...

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 7



Motivation

Goal:

describing and analyzing the behavior of
concurrent and/or probabilistic systems

Motivation:

supporting the design phase

=⇒ “Programming Concurrent Systems”
synchronization, scheduling, fairness, absence of deadlocks, ...

applying formal analysis methods

=⇒ “Performance Modelling”
queue throughput, response time in real-time systems, ...

verifying correctness properties

=⇒ “Model Checking”
validation of mutual exclusion, fairness, no deadlocks, ...

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 7



Motivation

Goal:

describing and analyzing the behavior of
concurrent and/or probabilistic systems

Motivation:

supporting the design phase

=⇒ “Programming Concurrent Systems”
synchronization, scheduling, fairness, absence of deadlocks, ...

applying formal analysis methods

=⇒ “Performance Modelling”
queue throughput, response time in real-time systems, ...

verifying correctness properties

=⇒ “Model Checking”
validation of mutual exclusion, fairness, no deadlocks, ...

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 7



Motivation

Goal:

describing and analyzing the behavior of
concurrent and/or probabilistic systems

Motivation:

supporting the design phase

=⇒ “Programming Concurrent Systems”
synchronization, scheduling, fairness, absence of deadlocks, ...

applying formal analysis methods

=⇒ “Performance Modelling”
queue throughput, response time in real-time systems, ...

verifying correctness properties

=⇒ “Model Checking”
validation of mutual exclusion, fairness, no deadlocks, ...

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 7



Concurrency and Interaction I

Observation: concurrency introduces new phenomena

Example 1.1

x := 0;
(x := x + 1 ‖ x := x + 2)

13 2
value of x: 3

At first glance: x is assigned 3

But: both parallel components could read x before it is written

Thus: x is assigned 2,

If exclusive access to shared memory and atomic execution of
assignments guaranteed
=⇒ only possible outcome: 3

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 8



Concurrency and Interaction I

Observation: concurrency introduces new phenomena

Example 1.1

x := 0;
(x := x + 1 ‖ x := x + 2)

13 2
value of x: 3

At first glance: x is assigned 3

But: both parallel components could read x before it is written

Thus: x is assigned 2,

If exclusive access to shared memory and atomic execution of
assignments guaranteed
=⇒ only possible outcome: 3

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 8



Concurrency and Interaction I

Observation: concurrency introduces new phenomena

Example 1.1

x := 0;
(x := x + 1 ‖ x := x + 2)

13 2
value of x: 3

At first glance: x is assigned 3

But: both parallel components could read x before it is written

Thus: x is assigned 2,

If exclusive access to shared memory and atomic execution of
assignments guaranteed
=⇒ only possible outcome: 3

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 8



Concurrency and Interaction I

Observation: concurrency introduces new phenomena

Example 1.1

x := 0;
(x := x + 1 ‖ x := x + 2)

13 2
value of x: 03

At first glance: x is assigned 3

But: both parallel components could read x before it is written

Thus: x is assigned 2,

If exclusive access to shared memory and atomic execution of
assignments guaranteed
=⇒ only possible outcome: 3

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 8



Concurrency and Interaction I

Observation: concurrency introduces new phenomena

Example 1.1

x := 0;
(x := x + 1 ‖ x := x + 2)

13 2
value of x: 03

At first glance: x is assigned 3

But: both parallel components could read x before it is written

Thus: x is assigned 2,

If exclusive access to shared memory and atomic execution of
assignments guaranteed
=⇒ only possible outcome: 3

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 8



Concurrency and Interaction I

Observation: concurrency introduces new phenomena

Example 1.1

x := 0;
(x := x + 1 ‖ x := x + 2)

13 2
value of x: 03

At first glance: x is assigned 3

But: both parallel components could read x before it is written

Thus: x is assigned 2,

If exclusive access to shared memory and atomic execution of
assignments guaranteed
=⇒ only possible outcome: 3

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 8



Concurrency and Interaction I

Observation: concurrency introduces new phenomena

Example 1.1

x := 0;
(x := x + 1 ‖ x := x + 2)

13 2
value of x: 13

At first glance: x is assigned 3

But: both parallel components could read x before it is written

Thus: x is assigned 2,

If exclusive access to shared memory and atomic execution of
assignments guaranteed
=⇒ only possible outcome: 3

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 8



Concurrency and Interaction I

Observation: concurrency introduces new phenomena

Example 1.1

x := 0;
(x := x + 1 ‖ x := x + 2)

13 2
value of x: 23

At first glance: x is assigned 3

But: both parallel components could read x before it is written

Thus: x is assigned 2,

If exclusive access to shared memory and atomic execution of
assignments guaranteed
=⇒ only possible outcome: 3

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 8



Concurrency and Interaction I

Observation: concurrency introduces new phenomena

Example 1.1

x := 0;
(x := x + 1 ‖ x := x + 2)

13 2
value of x: 03

At first glance: x is assigned 3

But: both parallel components could read x before it is written

Thus: x is assigned 2,

If exclusive access to shared memory and atomic execution of
assignments guaranteed
=⇒ only possible outcome: 3

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 8



Concurrency and Interaction I

Observation: concurrency introduces new phenomena

Example 1.1

x := 0;
(x := x + 1 ‖ x := x + 2)

13 2
value of x: 03

At first glance: x is assigned 3

But: both parallel components could read x before it is written

Thus: x is assigned 2,

If exclusive access to shared memory and atomic execution of
assignments guaranteed
=⇒ only possible outcome: 3

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 8



Concurrency and Interaction I

Observation: concurrency introduces new phenomena

Example 1.1

x := 0;
(x := x + 1 ‖ x := x + 2)

13 2
value of x: 03

At first glance: x is assigned 3

But: both parallel components could read x before it is written

Thus: x is assigned 2,

If exclusive access to shared memory and atomic execution of
assignments guaranteed
=⇒ only possible outcome: 3

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 8



Concurrency and Interaction I

Observation: concurrency introduces new phenomena

Example 1.1

x := 0;
(x := x + 1 ‖ x := x + 2)

13 2
value of x: 23

At first glance: x is assigned 3

But: both parallel components could read x before it is written

Thus: x is assigned 2,

If exclusive access to shared memory and atomic execution of
assignments guaranteed
=⇒ only possible outcome: 3

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 8



Concurrency and Interaction I

Observation: concurrency introduces new phenomena

Example 1.1

x := 0;
(x := x + 1 ‖ x := x + 2)

13 2
value of x: 13

At first glance: x is assigned 3

But: both parallel components could read x before it is written

Thus: x is assigned 2, 1,

If exclusive access to shared memory and atomic execution of
assignments guaranteed
=⇒ only possible outcome: 3

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 8



Concurrency and Interaction I

Observation: concurrency introduces new phenomena

Example 1.1

x := 0;
(x := x + 1 ‖ x := x + 2)

13 2
value of x: 03

At first glance: x is assigned 3

But: both parallel components could read x before it is written

Thus: x is assigned 2, 1,

If exclusive access to shared memory and atomic execution of
assignments guaranteed
=⇒ only possible outcome: 3

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 8



Concurrency and Interaction I

Observation: concurrency introduces new phenomena

Example 1.1

x := 0;
(x := x + 1 ‖ x := x + 2)

13 2
value of x: 03

At first glance: x is assigned 3

But: both parallel components could read x before it is written

Thus: x is assigned 2, 1,

If exclusive access to shared memory and atomic execution of
assignments guaranteed
=⇒ only possible outcome: 3

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 8



Concurrency and Interaction I

Observation: concurrency introduces new phenomena

Example 1.1

x := 0;
(x := x + 1 ‖ x := x + 2)

13 2
value of x: 23

At first glance: x is assigned 3

But: both parallel components could read x before it is written

Thus: x is assigned 2, 1,

If exclusive access to shared memory and atomic execution of
assignments guaranteed
=⇒ only possible outcome: 3

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 8



Concurrency and Interaction I

Observation: concurrency introduces new phenomena

Example 1.1

x := 0;
(x := x + 1 ‖ x := x + 2)

13 2
value of x: 23

At first glance: x is assigned 3

But: both parallel components could read x before it is written

Thus: x is assigned 2, 1,

If exclusive access to shared memory and atomic execution of
assignments guaranteed
=⇒ only possible outcome: 3

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 8



Concurrency and Interaction I

Observation: concurrency introduces new phenomena

Example 1.1

x := 0;
(x := x + 1 ‖ x := x + 2)

13 2
value of x: 3

At first glance: x is assigned 3

But: both parallel components could read x before it is written

Thus: x is assigned 2, 1, or 3

If exclusive access to shared memory and atomic execution of
assignments guaranteed
=⇒ only possible outcome: 3

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 8



Concurrency and Interaction I

Observation: concurrency introduces new phenomena

Example 1.1

x := 0;
(x := x + 1 ‖ x := x + 2)

13 2
value of x: 3

At first glance: x is assigned 3

But: both parallel components could read x before it is written

Thus: x is assigned 2, 1, or 3

If exclusive access to shared memory and atomic execution of
assignments guaranteed
=⇒ only possible outcome: 3

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 8



Concurrency and Interaction II

The problem arises due to the combination of

concurrency and

interaction (here: via shared memory)

Conclusion

When modelling concurrent systems, the precise description of the
mechanisms of both concurrency and interaction is crucially important.

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 9



Concurrency and Interaction II

The problem arises due to the combination of

concurrency and

interaction (here: via shared memory)

Conclusion

When modelling concurrent systems, the precise description of the
mechanisms of both concurrency and interaction is crucially important.

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 9



Reactive Systems I

Thus: “classical” model for sequential systems

System : Input → Output

(transformational systems) is not adequate

Missing: aspect of interaction

Rather: reactive systems which interact with environment and
among themselves

Main interest: not terminating computations but infinite behavior
(system maintains ongoing interaction with environment)

Examples:

operating systems
embedded systems controlling mechanical or electrical devices
(planes, cars, home appliances, ...)
power plants, production lines, ...

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 10



Reactive Systems I

Thus: “classical” model for sequential systems

System : Input → Output

(transformational systems) is not adequate

Missing: aspect of interaction

Rather: reactive systems which interact with environment and
among themselves

Main interest: not terminating computations but infinite behavior
(system maintains ongoing interaction with environment)

Examples:

operating systems
embedded systems controlling mechanical or electrical devices
(planes, cars, home appliances, ...)
power plants, production lines, ...

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 10



Reactive Systems I

Thus: “classical” model for sequential systems

System : Input → Output

(transformational systems) is not adequate

Missing: aspect of interaction

Rather: reactive systems which interact with environment and
among themselves

Main interest: not terminating computations but infinite behavior
(system maintains ongoing interaction with environment)

Examples:

operating systems
embedded systems controlling mechanical or electrical devices
(planes, cars, home appliances, ...)
power plants, production lines, ...

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 10



Reactive Systems II

Observation: reactive systems often safety critical
=⇒ correct behavior has to be ensured

Safety properties: “Nothing bad is going to happen.”
E.g., “at most one process in the critical section”

Liveness properties: “Eventually something good will happen.”
E.g., “the server will finally answer”

Fairness properties: “No component will starve to death.”
E.g., “any process requiring entry to the critical section will
eventually be admitted”

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 11



Our approach I

The formal verification of such properties requires a mathematical
model of the underlying system. Here we use the following approach:

interaction is interpreted by explicit, synchronous communication
and

concurrency is modelled by interleaving, i.e., the (communication)
actions of concurrent processes are merged:

(a; b) ‖ (x; y) corresponds to

a

b

x

y

or

a

x

b

y

or

x

a

b

y

or ...

=⇒ reduction of concurrency to nondeterminism
(cf. multitasking on sequential computers)

Possible alternatives:

interaction via shared memory/asynchronous message passing/...

concurrency via true parallelism (Petri Nets)

later: probabilistic aspects [Katoen]

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 12



Our approach I

The formal verification of such properties requires a mathematical
model of the underlying system. Here we use the following approach:

interaction is interpreted by explicit, synchronous communication
and

concurrency is modelled by interleaving, i.e., the (communication)
actions of concurrent processes are merged:

(a; b) ‖ (x; y) corresponds to

a

b

x

y

or

a

x

b

y

or

x

a

b

y

or ...

=⇒ reduction of concurrency to nondeterminism
(cf. multitasking on sequential computers)

Possible alternatives:

interaction via shared memory/asynchronous message passing/...

concurrency via true parallelism (Petri Nets)

later: probabilistic aspects [Katoen]

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 12



Our approach II

“Primary meaning” of a system: potential of communication
i.e., the set of possible communication sequences

In particular:

I/O modelled as communication with environment

storage access modelled as communication with a “storage process”

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 13



Overview of the Course

1st part of course (CCS):
2 Calculus of Communicating Systems (CCS)

(syntax, labeled transition systems, transition rules)
3 Equivalence of CCS Processes

(trace equivalence, strong/weak bisimulation, observation
congruence, axiomatizability of equivalences)

4 Case Study: Alternating-Bit Protocol
(modeling channels/sender/receiver, correctness, extensions)

2nd part of course (Probabilistic Models):
5 Stochastic processes

(Markov chains and decision processes)
6 Probabilistic (bi)simulation

(strong bisimulation/simulation, simulation equivalence)
7 Probabilistic process algebra

(probabilistic transition systems, operators, axiomatizability of
probabilistic bisimulation)

8 Further Issues
(nondeterminism, continuous time, Markovian process algebra)

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 14



Overview of the Course

1st part of course (CCS):
2 Calculus of Communicating Systems (CCS)

(syntax, labeled transition systems, transition rules)
3 Equivalence of CCS Processes

(trace equivalence, strong/weak bisimulation, observation
congruence, axiomatizability of equivalences)

4 Case Study: Alternating-Bit Protocol
(modeling channels/sender/receiver, correctness, extensions)

2nd part of course (Probabilistic Models):
5 Stochastic processes

(Markov chains and decision processes)
6 Probabilistic (bi)simulation

(strong bisimulation/simulation, simulation equivalence)
7 Probabilistic process algebra

(probabilistic transition systems, operators, axiomatizability of
probabilistic bisimulation)

8 Further Issues
(nondeterminism, continuous time, Markovian process algebra)

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 14



Literature

(also see the collection [“Handapparat Probabilistic Models for
Concurrency / PMC”] at the CS Library)

1st part of course (CCS):
R. Milner: Communication and Concurrency

Prentice-Hall, 1989
R. Milner: Communicating and Mobile Systems: the π-calculus

Cambridge University Press, 1999
J.A. Bergstra, A. Ponse, S.A. Smolka: Handbook of Process Algebra

Elsevier, 2001
2nd part of course (Probabilistic Models):

H.C. Tijms: A first course in stochastic models

Wiley, 2003
J. Hillston: A Compositional Approach to Performance Modelling

Cambridge University Press, 1996
H. Hermanns: Interactive Markov Chains: The Quest for Quantified

Quality

LNCS 2428, Springer, 2002
E. Brinksma, H. Hermanns, J.-P. Katoen: Lectures on Formal

Methods and Performance Analysis, LNCS 2090, Springer, 2001

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 15



Outline

1 Preliminaries

2 Introduction

3 Syntax of CCS

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 16



History of CCS

Robin Milner: A Calculus of Communicating Systems

LNCS 92, Springer, 1980

Robin Milner: Communication and Concurrency

Prentice-Hall, 1989

Approach: describing concurrency on a simple and abstract level,
using only a few basic primitives

no explicit storage (variables)

no explicit representation of values (numbers, Booleans, ...)

=⇒ abstraction of communication potential of a concurrent system

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 17



History of CCS

Robin Milner: A Calculus of Communicating Systems

LNCS 92, Springer, 1980

Robin Milner: Communication and Concurrency

Prentice-Hall, 1989

Approach: describing concurrency on a simple and abstract level,
using only a few basic primitives

no explicit storage (variables)

no explicit representation of values (numbers, Booleans, ...)

=⇒ abstraction of communication potential of a concurrent system

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 17



Syntax of CCS I

Definition 1.2 (Syntax of CCS)

Let N be a set of (action) names.

N := {a | a ∈ N } denotes the set of co-names.

Act := N ∪N ∪ {τ} is the set of actions where τ denotes the silent
(or: unobservable) action.

Let Pid be a set of process identifiers.

The set Prc of process expressions is defined by the following
syntax: P ::= nil (inaction)

| α.P (prefixing)
| P1 + P2 (choice)
| P1 ‖ P2 (parallel composition)
| new aP (restriction)
| A(a1, . . . , an) (process call)

where α ∈ Act , a, ai ∈ N , and A ∈ Pid .

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 18



Syntax of CCS I

Definition 1.2 (Syntax of CCS)

Let N be a set of (action) names.

N := {a | a ∈ N } denotes the set of co-names.

Act := N ∪N ∪ {τ} is the set of actions where τ denotes the silent
(or: unobservable) action.

Let Pid be a set of process identifiers.

The set Prc of process expressions is defined by the following
syntax: P ::= nil (inaction)

| α.P (prefixing)
| P1 + P2 (choice)
| P1 ‖ P2 (parallel composition)
| new aP (restriction)
| A(a1, . . . , an) (process call)

where α ∈ Act , a, ai ∈ N , and A ∈ Pid .

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 18



Syntax of CCS I

Definition 1.2 (Syntax of CCS)

Let N be a set of (action) names.

N := {a | a ∈ N } denotes the set of co-names.

Act := N ∪N ∪ {τ} is the set of actions where τ denotes the silent
(or: unobservable) action.

Let Pid be a set of process identifiers.

The set Prc of process expressions is defined by the following
syntax: P ::= nil (inaction)

| α.P (prefixing)
| P1 + P2 (choice)
| P1 ‖ P2 (parallel composition)
| new aP (restriction)
| A(a1, . . . , an) (process call)

where α ∈ Act , a, ai ∈ N , and A ∈ Pid .

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 18



Syntax of CCS I

Definition 1.2 (Syntax of CCS)

Let N be a set of (action) names.

N := {a | a ∈ N } denotes the set of co-names.

Act := N ∪N ∪ {τ} is the set of actions where τ denotes the silent
(or: unobservable) action.

Let Pid be a set of process identifiers.

The set Prc of process expressions is defined by the following
syntax: P ::= nil (inaction)

| α.P (prefixing)
| P1 + P2 (choice)
| P1 ‖ P2 (parallel composition)
| new aP (restriction)
| A(a1, . . . , an) (process call)

where α ∈ Act , a, ai ∈ N , and A ∈ Pid .

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 18



Syntax of CCS I

Definition 1.2 (Syntax of CCS)

Let N be a set of (action) names.

N := {a | a ∈ N } denotes the set of co-names.

Act := N ∪N ∪ {τ} is the set of actions where τ denotes the silent
(or: unobservable) action.

Let Pid be a set of process identifiers.

The set Prc of process expressions is defined by the following
syntax: P ::= nil (inaction)

| α.P (prefixing)
| P1 + P2 (choice)
| P1 ‖ P2 (parallel composition)
| new aP (restriction)
| A(a1, . . . , an) (process call)

where α ∈ Act , a, ai ∈ N , and A ∈ Pid .

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 18



Syntax of CCS II

Definition 1.2 (continued)

A (recursive) process definition is an equation system of the form

(Ai(ai1, . . . , aini
) = Pi | 1 ≤ i ≤ k)

where k ≥ 1, Ai ∈ Pid (pairwise different), aij ∈ N , and Pi ∈ Prc

(with process identifiers from {A1, . . . , Ak}).

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 19



Meaning of CCS Constructs

nil is an inactive process that can do nothing.

α.P can execute α and then behaves as P .

An action a ∈ N (a ∈ N ) is interpreted as an input (output, resp.)
operation. Both are complementary: if executed in parallel (i.e., in
P1 ‖ P2), they are merged into a τ -action.

P1 + P2 represents the non-deterministic choice between P1 and P2.

P1 ‖ P2 denotes the concurrent execution of P1 and P2, involving
interleaving or communication.

The restriction new aP declares a as a local name which is only
known in P .

The behavior of a process call A(a1, . . . , an) is defined by the
right-hand side of the corresponding equation where a1, . . . , an

replace the formal name parameters.

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 20



Meaning of CCS Constructs

nil is an inactive process that can do nothing.

α.P can execute α and then behaves as P .

An action a ∈ N (a ∈ N ) is interpreted as an input (output, resp.)
operation. Both are complementary: if executed in parallel (i.e., in
P1 ‖ P2), they are merged into a τ -action.

P1 + P2 represents the non-deterministic choice between P1 and P2.

P1 ‖ P2 denotes the concurrent execution of P1 and P2, involving
interleaving or communication.

The restriction new aP declares a as a local name which is only
known in P .

The behavior of a process call A(a1, . . . , an) is defined by the
right-hand side of the corresponding equation where a1, . . . , an

replace the formal name parameters.

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 20



Meaning of CCS Constructs

nil is an inactive process that can do nothing.

α.P can execute α and then behaves as P .

An action a ∈ N (a ∈ N ) is interpreted as an input (output, resp.)
operation. Both are complementary: if executed in parallel (i.e., in
P1 ‖ P2), they are merged into a τ -action.

P1 + P2 represents the non-deterministic choice between P1 and P2.

P1 ‖ P2 denotes the concurrent execution of P1 and P2, involving
interleaving or communication.

The restriction new aP declares a as a local name which is only
known in P .

The behavior of a process call A(a1, . . . , an) is defined by the
right-hand side of the corresponding equation where a1, . . . , an

replace the formal name parameters.

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 20



Meaning of CCS Constructs

nil is an inactive process that can do nothing.

α.P can execute α and then behaves as P .

An action a ∈ N (a ∈ N ) is interpreted as an input (output, resp.)
operation. Both are complementary: if executed in parallel (i.e., in
P1 ‖ P2), they are merged into a τ -action.

P1 + P2 represents the non-deterministic choice between P1 and P2.

P1 ‖ P2 denotes the concurrent execution of P1 and P2, involving
interleaving or communication.

The restriction new aP declares a as a local name which is only
known in P .

The behavior of a process call A(a1, . . . , an) is defined by the
right-hand side of the corresponding equation where a1, . . . , an

replace the formal name parameters.

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 20



Meaning of CCS Constructs

nil is an inactive process that can do nothing.

α.P can execute α and then behaves as P .

An action a ∈ N (a ∈ N ) is interpreted as an input (output, resp.)
operation. Both are complementary: if executed in parallel (i.e., in
P1 ‖ P2), they are merged into a τ -action.

P1 + P2 represents the non-deterministic choice between P1 and P2.

P1 ‖ P2 denotes the concurrent execution of P1 and P2, involving
interleaving or communication.

The restriction new aP declares a as a local name which is only
known in P .

The behavior of a process call A(a1, . . . , an) is defined by the
right-hand side of the corresponding equation where a1, . . . , an

replace the formal name parameters.

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 20



Meaning of CCS Constructs

nil is an inactive process that can do nothing.

α.P can execute α and then behaves as P .

An action a ∈ N (a ∈ N ) is interpreted as an input (output, resp.)
operation. Both are complementary: if executed in parallel (i.e., in
P1 ‖ P2), they are merged into a τ -action.

P1 + P2 represents the non-deterministic choice between P1 and P2.

P1 ‖ P2 denotes the concurrent execution of P1 and P2, involving
interleaving or communication.

The restriction new aP declares a as a local name which is only
known in P .

The behavior of a process call A(a1, . . . , an) is defined by the
right-hand side of the corresponding equation where a1, . . . , an

replace the formal name parameters.

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 20



Meaning of CCS Constructs

nil is an inactive process that can do nothing.

α.P can execute α and then behaves as P .

An action a ∈ N (a ∈ N ) is interpreted as an input (output, resp.)
operation. Both are complementary: if executed in parallel (i.e., in
P1 ‖ P2), they are merged into a τ -action.

P1 + P2 represents the non-deterministic choice between P1 and P2.

P1 ‖ P2 denotes the concurrent execution of P1 and P2, involving
interleaving or communication.

The restriction new aP declares a as a local name which is only
known in P .

The behavior of a process call A(a1, . . . , an) is defined by the
right-hand side of the corresponding equation where a1, . . . , an

replace the formal name parameters.

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 20



CCS Examples

Example 1.3
1 One-place buffer

2 Two-place buffer

3 Parallel specification of two-place buffer

(on the board)

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 21



Notational Conventions

a means a

P1 + . . . + Pn (n ∈ N) sometimes written as
∑n

i=1
Pi where∑

0

i=1
Pi := nil

“.nil” can be omitted: a.b means a.b.nil

new a, b P means new a new b P

A(a1, . . . , an) sometimes written as A(~a), A() as A

prefixing and restriction binds stronger than composition,
composition binds stronger than choice:

new aP + b.Q ‖ R means (new aP ) + ((b.Q) ‖ R)

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 22



Notational Conventions

a means a

P1 + . . . + Pn (n ∈ N) sometimes written as
∑n

i=1
Pi where∑

0

i=1
Pi := nil

“.nil” can be omitted: a.b means a.b.nil

new a, b P means new a new b P

A(a1, . . . , an) sometimes written as A(~a), A() as A

prefixing and restriction binds stronger than composition,
composition binds stronger than choice:

new aP + b.Q ‖ R means (new aP ) + ((b.Q) ‖ R)

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 22



Notational Conventions

a means a

P1 + . . . + Pn (n ∈ N) sometimes written as
∑n

i=1
Pi where∑

0

i=1
Pi := nil

“.nil” can be omitted: a.b means a.b.nil

new a, b P means new a new b P

A(a1, . . . , an) sometimes written as A(~a), A() as A

prefixing and restriction binds stronger than composition,
composition binds stronger than choice:

new aP + b.Q ‖ R means (new aP ) + ((b.Q) ‖ R)

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 22



Notational Conventions

a means a

P1 + . . . + Pn (n ∈ N) sometimes written as
∑n

i=1
Pi where∑

0

i=1
Pi := nil

“.nil” can be omitted: a.b means a.b.nil

new a, b P means new a new b P

A(a1, . . . , an) sometimes written as A(~a), A() as A

prefixing and restriction binds stronger than composition,
composition binds stronger than choice:

new aP + b.Q ‖ R means (new aP ) + ((b.Q) ‖ R)

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 22



Notational Conventions

a means a

P1 + . . . + Pn (n ∈ N) sometimes written as
∑n

i=1
Pi where∑

0

i=1
Pi := nil

“.nil” can be omitted: a.b means a.b.nil

new a, b P means new a new b P

A(a1, . . . , an) sometimes written as A(~a), A() as A

prefixing and restriction binds stronger than composition,
composition binds stronger than choice:

new aP + b.Q ‖ R means (new aP ) + ((b.Q) ‖ R)

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 22



Notational Conventions

a means a

P1 + . . . + Pn (n ∈ N) sometimes written as
∑n

i=1
Pi where∑

0

i=1
Pi := nil

“.nil” can be omitted: a.b means a.b.nil

new a, b P means new a new b P

A(a1, . . . , an) sometimes written as A(~a), A() as A

prefixing and restriction binds stronger than composition,
composition binds stronger than choice:

new aP + b.Q ‖ R means (new aP ) + ((b.Q) ‖ R)

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 22


	Preliminaries
	Introduction
	Syntax of CCS

