
Modeling Concurrent and Probabilistic Systems
Lecture 10: The Alternating Bit Protocol

Joost-Pieter Katoen Thomas Noll

Software Modeling and Verification Group
RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/mcps07/

Winter Semester 2007/08

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/mcps07/

Outline

1 Repetition: The Alternating Bit Protocol

2 Implementation of the Alternating Bit Protocol

3 Analysis of the Alternating Bit Protocol

4 Extension: Duplication of Messages

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 2

Repetition: The Setting

Goal: design of a communication protocol which guarantees reliable
data transfer over unreliable channels

Overview of system “architecture”:

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��
��1 PPPPq

����)PP
PPi

--accept
send trans

ack reply

deliverSender

Trans

Receiver

Ack

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 3

Repetition: Working Principle

�
 �	
�
 �	
�
 �	

�
 �	���1 PPPq

���)PPPi
--accept

send trans

ack reply

deliver
Sender

Trans

Receiver

Ack

Sender transfers data (from a given finite set D) to Receiver using
channel Trans
Receiver confirms reception via Ack
Properties of channels:

unidirectional data transfer
capacity: one message
(=⇒ sequential, i.e., respects order of messages)
detection of transmission errors
(loss/duplication/corruption of messages)
errors reported to target process

Idea: use redundancy (additional control bit) to ensure safeness of
data transfer

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 4

Repetition: Modeling of Channels

�
 �	
�
 �	
�
 �	

�
 �	���1 PPPq

���)PPPi
--accept

send trans

ack reply

deliver
Sender

Trans

Receiver

Ack

Trans transmits frames of the following form:

F := {db | d ∈ D, b ∈ {0, 1}} (finite)

It detects transmission errors and reports it to Receiver :

Trans =
∑
f∈F

sendf .(transf .Trans︸ ︷︷ ︸
successful

+ trans⊥.Trans︸ ︷︷ ︸
error

)

Ack behaves like Trans but transmits only control bits:

Ack =
∑

b∈{0,1}

replyb.(ack b.Ack︸ ︷︷ ︸
successful

+ ack⊥.Ack︸ ︷︷ ︸
error

)

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 5

Repetition: Design Goal

�
 �	
�
 �	
�
 �	

�
 �	���1 PPPq

���)PPPi
--accept

send trans

ack reply

deliver
Sender

Trans

Receiver

Ack

Under the above side conditions, give CCS implementations of Sender
and Receiver such that the overall system works correctly, i.e., behaves
like a one-element buffer:

Buffer(
−−−−→
accept ,

−−−−→
deliver) =

∑
d∈D

acceptd.Bufferd(
−−−−→
accept ,

−−−−→
deliver)

Bufferd(
−−−−→
accept ,

−−−−→
deliver) = deliverd.Buffer(

−−−−→
accept ,

−−−−→
deliver)

where
−−−−→
accept := (acceptd1 , . . . , acceptdn

)

and
−−−−→
deliver := (deliverd1 , . . . , deliverdn)

for D = {d1, . . . , dn}
Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 6

Outline

1 Repetition: The Alternating Bit Protocol

2 Implementation of the Alternating Bit Protocol

3 Analysis of the Alternating Bit Protocol

4 Extension: Duplication of Messages

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 7

Implementation of the Sender

�
 �	
�
 �	
�
 �	

�
 �	���1 PPPq

���)PPPi
--accept

send trans

ack reply

deliver
Sender

Trans

Receiver

Ack

Sender accepts d ∈ D via acceptd and repeatedly sends frames of the
form d0 over Trans until it receives the acknowledgment 0 over Ack .
For the next data item, control bit 1 is used and so on
(=⇒ “Alternating Bit Protocol”).

Formally, for b ∈ {0, 1} and d ∈ D:

Sender = Sender0

Sender b =
∑
d∈D

acceptd.Senddb

Senddb = senddb.Waitdb
Waitdb = ack b.Sender1−b︸ ︷︷ ︸

successful

+ ack1−b.Senddb + ack⊥.Senddb︸ ︷︷ ︸
error

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 8

Implementation of the Receiver

Receiver gets frames of the form db or ⊥. In the first case, if b has the
expected value, d is forwarded via deliverd, and b is returned via Ack .
Otherwise the transmission is re-initiated by returning the “wrong”
control bit 1− b to Sender .

Formally, for b ∈ {0, 1} and d ∈ D:

Receiver = Receiver0

Receiver b =
∑
d∈D

transdb.Replydb

+
∑
d∈D

transd(1−b).reply1−b.Receiver b

+ trans⊥.reply1−bReceiver b
Replydb = deliverd.replyb.Receiver1−b

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 9

The Overall System

�
 �	
�
 �	
�
 �	

�
 �	���1 PPPq

���)PPPi
--accept

send trans

ack reply

deliver
Sender

Trans

Receiver

Ack

The overall system is given by

ABP(
−−−−→
accept ,

−−−−→
deliver) = newL (Sender ‖ Trans ‖ Ack ‖ Receiver)

where

L := {senddb, transdb, replyb, ack b | db ∈ F} ∪ {trans⊥, ack⊥}

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 10

Outline

1 Repetition: The Alternating Bit Protocol

2 Implementation of the Alternating Bit Protocol

3 Analysis of the Alternating Bit Protocol

4 Extension: Duplication of Messages

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 11

Correctness of the ABP I

Theorem 10.1

ABP(
−−−−→
accept ,

−−−−→
deliver) ' Buffer(

−−−−→
accept ,

−−−−→
deliver)

Remark: because of internal τ -steps in ABP , ABP ∼ Buffer cannot
hold.

Proof.

1 Construct transition system of ABP(
−−−−→
accept ,

−−−−→
deliver)

(next slide; S = Sender , W = Wait , T = Trans, A = Ack ,
R = Receiver/Reply , d, e ∈ D; without restrictions)

2 Show that ABP(
−−−−→
accept ,

−−−−→
deliver) ≈ Buffer(

−−−−→
accept ,

−−−−→
deliver)

3 ABP(
−−−−→
accept ,

−−−−→
deliver) 6 τ−→ and Buffer(

−−−−→
accept ,

−−−−→
deliver) 6 τ−→

=⇒ ABP(
−−−−→
accept ,

−−−−→
deliver) ' Buffer(

−−−−→
accept ,

−−−−→
deliver)

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 12

Correctness of the ABP II

Proof (continued).

� � � ?

?

?

6

6

6

?�

6

�

6

-

?

-

6

-

?�

ABP ≈ Buffer

Buffer ≈
S0 ‖ T ‖ A ‖ R0

Buffer ≈
S1 ‖ T ‖ A ‖ R1

Bufferd ≈
Wd0 ‖ T ‖ A ‖ Rd0

Buffere ≈
We1 ‖ T ‖ A ‖ Re1

@
@@Racceptd

acceptd

τ〈sendd0〉 τ〈transd0〉

accepteτ〈sende1〉τ〈transe1〉

deliverd

τ〈reply0〉

delivere

τ〈reply1〉

τ〈reply1〉

τ〈transd0〉

τ〈sendd0〉

τ〈reply0〉

τ〈trans⊥〉

τ〈trans⊥〉

τ〈trans⊥〉

τ〈trans⊥〉

τ〈transe1〉

τ〈sende1〉

τ〈ack⊥〉

τ〈ack⊥〉

τ〈ack⊥〉

τ〈ack⊥〉

τ〈ack0〉τ〈ack0〉

τ〈ack1〉 τ〈ack1〉

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 13

Outline

1 Repetition: The Alternating Bit Protocol

2 Implementation of the Alternating Bit Protocol

3 Analysis of the Alternating Bit Protocol

4 Extension: Duplication of Messages

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 14

Duplication of Messages I

Duplication of messages can be modelled as follows:

Trans =
∑
f∈F

sendf .(transf .Trans︸ ︷︷ ︸
successful

+

trans⊥.Trans︸ ︷︷ ︸
error

+

transf .transf .Trans︸ ︷︷ ︸
duplication

)

Ack =
∑

b∈{0,1}

replyb.(ack b.Ack︸ ︷︷ ︸
successful

+ ack⊥.Ack︸ ︷︷ ︸
error

+ ack b.ack b.Ack︸ ︷︷ ︸
duplication

)

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 15

Duplication of Messages II

�
 �	
�
 �	
�
 �	

�
 �	���1 PPPq

���)PPPi
--accept

send trans

ack reply

deliver
Sender

Trans

Receiver

Ack

Now the ABP behaves as follows (without restriction):

Sender b =
∑
d∈D

acceptd.SenddbSenddb = senddb.WaitdbReceiver b =
∑
d∈D

transdb.Replydb+. . .Replydb = deliverd.replyb.Receiver1−bReplydb = deliverd.replyb.Receiver1−bWaitdb = ack b.Sender1−b+ack1−b.Senddb+ack⊥.SenddbReceiver b = . . .+
∑
d∈D

transd(1−b).reply1−b.Receiver bSender b =
∑
d∈D

acceptd.SenddbSenddb = senddb.WaitdbWaitdb = ack b.Sender1−b+ack1−b.Senddb+ack⊥.SenddbReceiver b = . . .+
∑
d∈D

transd(1−b).reply1−b.Receiver bReceiver b =
∑
d∈D

transdb.Replydb+. . .Replydb = deliverd.replyb.Receiver1−b

Trans =
∑
f∈F

sendf .(transf .Trans+trans⊥.Trans+transf .transf .Trans)Trans =
∑
f∈F

sendf .(transf .Trans+trans⊥.Trans+transf .transf .Trans)Ack =
∑

b∈{0,1}

replyb.(ack b.Ack+ack⊥.Ack+ack b.ack b.Ack)Ack =
∑

b∈{0,1}

replyb.(ack b.Ack+ack⊥.Ack+ack b.ack b.Ack)Trans =
∑
f∈F

sendf .(transf .Trans+trans⊥.Trans+transf .transf .Trans)Trans =
∑
f∈F

sendf .(transf .Trans+trans⊥.Trans+transf .transf .Trans)Ack =
∑

b∈{0,1}

replyb.(ack b.Ack+ack⊥.Ack+ack b.ack b.Ack)Ack =
∑

b∈{0,1}

replyb.(ack b.Ack+ack⊥.Ack+ack b.ack b.Ack)Trans =
∑
f∈F

sendf .(transf .Trans+trans⊥.Trans+transf .transf .Trans)

Sender0 ‖ Trans ‖ Ack ‖ Receiver0Sendd0 ‖ Trans ‖ Ack ‖ Receiver0Waitd0 ‖ (. . .+ transd0.transd0.Trans) ‖ Ack ‖ Receiver0Waitd0 ‖ transd0.Trans ‖ Ack ‖ Replyd0Waitd0 ‖ transd0.Trans ‖ Ack ‖ reply0.Receiver1Waitd0 ‖ transd0.Trans ‖ (. . .+ ack0.ack0.Ack) ‖ Receiver1Sender1 ‖ transd0.Trans ‖ ack0.Ack ‖ Receiver1Sender1 ‖ Trans ‖ ack0.Ack ‖ reply0.Receiver1Sende1 ‖ Trans ‖ ack0.Ack ‖ reply0.Receiver1Waite1 ‖ (. . .+ transe1.transe1.Trans) ‖ ack0.Ack ‖ reply0.Receiver1Sende1 ‖ (. . .+ transe1.transe1.Trans) ‖ Ack ‖ reply0.Receiver1Sende1 ‖ (. . .+ transe1.transe1.Trans) ‖ (. . .+ ack0.ack0.Ack) ‖ Receiver1Sende1 ‖ transe1.Trans ‖ (. . .+ ack0.ack0.Ack) ‖ Replye1Sende1 ‖ transe1.Trans ‖ (. . .+ ack0.ack0.Ack) ‖ reply1.Receiver0

↓ acceptdτ〈sendd0〉τ〈transd0〉deliverdτ〈reply0〉τ〈ack0〉τ〈transd0〉accepteτ〈sende1〉τ〈ack0〉τ〈reply0〉τ〈transe1〉delivere

Sendd0 ‖ Trans ‖ Ack ‖ Receiver0Waitd0 ‖ (. . .+ transd0.transd0.Trans) ‖ Ack ‖ Receiver0Waitd0 ‖ transd0.Trans ‖ Ack ‖ Replyd0Waitd0 ‖ transd0.Trans ‖ Ack ‖ reply0.Receiver1Waitd0 ‖ transd0.Trans ‖ (. . .+ ack0.ack0.Ack) ‖ Receiver1Sender1 ‖ transd0.Trans ‖ ack0.Ack ‖ Receiver1Sender1 ‖ Trans ‖ ack0.Ack ‖ reply0.Receiver1Sende1 ‖ Trans ‖ ack0.Ack ‖ reply0.Receiver1Waite1 ‖ (. . .+ transe1.transe1.Trans) ‖ ack0.Ack ‖ reply0.Receiver1Sende1 ‖ (. . .+ transe1.transe1.Trans) ‖ Ack ‖ reply0.Receiver1Sende1 ‖ (. . .+ transe1.transe1.Trans) ‖ (. . .+ ack0.ack0.Ack) ‖ Receiver1Sende1 ‖ transe1.Trans ‖ (. . .+ ack0.ack0.Ack) ‖ Replye1Sende1 ‖ transe1.Trans ‖ (. . .+ ack0.ack0.Ack) ‖ reply1.Receiver0?

Deadlock =⇒ ABP cannot handle this
Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 16

	Repetition: The Alternating Bit Protocol
	Implementation of the Alternating Bit Protocol
	Analysis of the Alternating Bit Protocol
	Extension: Duplication of Messages

