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Repetition: The Setting

Goal: design of a communication protocol which guarantees reliable
data transfer over unreliable channels

Overview of system “architecture”:
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Repetition: Working Principle
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Sender transfers data (from a given finite set D) to Receiver using
channel Trans
Receiver confirms reception via Ack
Properties of channels:

unidirectional data transfer
capacity: one message
( =⇒ sequential, i.e., respects order of messages)
detection of transmission errors
(loss/duplication/corruption of messages)
errors reported to target process

Idea: use redundancy (additional control bit) to ensure safeness of
data transfer
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Repetition: Modeling of Channels
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Trans transmits frames of the following form:

F := {db | d ∈ D, b ∈ {0, 1}} (finite)

It detects transmission errors and reports it to Receiver :

Trans =
∑
f∈F

sendf .(transf .Trans︸ ︷︷ ︸
successful

+ trans⊥.Trans︸ ︷︷ ︸
error

)

Ack behaves like Trans but transmits only control bits:

Ack =
∑

b∈{0,1}

replyb.(ack b.Ack︸ ︷︷ ︸
successful

+ ack⊥.Ack︸ ︷︷ ︸
error

)
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Repetition: Design Goal
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Under the above side conditions, give CCS implementations of Sender
and Receiver such that the overall system works correctly, i.e., behaves
like a one-element buffer:

Buffer(
−−−−→
accept ,

−−−−→
deliver) =

∑
d∈D

acceptd.Bufferd(
−−−−→
accept ,

−−−−→
deliver)

Bufferd(
−−−−→
accept ,

−−−−→
deliver) = deliverd.Buffer(

−−−−→
accept ,

−−−−→
deliver)

where
−−−−→
accept := (acceptd1 , . . . , acceptdn

)

and
−−−−→
deliver := (deliverd1 , . . . , deliverdn)

for D = {d1, . . . , dn}
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Implementation of the Sender
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Sender accepts d ∈ D via acceptd and repeatedly sends frames of the
form d0 over Trans until it receives the acknowledgment 0 over Ack .
For the next data item, control bit 1 is used and so on
( =⇒ “Alternating Bit Protocol”).

Formally, for b ∈ {0, 1} and d ∈ D:

Sender = Sender0

Sender b =
∑
d∈D

acceptd.Senddb

Senddb = senddb.Waitdb
Waitdb = ack b.Sender1−b︸ ︷︷ ︸

successful

+ ack1−b.Senddb + ack⊥.Senddb︸ ︷︷ ︸
error
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Implementation of the Receiver

Receiver gets frames of the form db or ⊥. In the first case, if b has the
expected value, d is forwarded via deliverd, and b is returned via Ack .
Otherwise the transmission is re-initiated by returning the “wrong”
control bit 1− b to Sender .

Formally, for b ∈ {0, 1} and d ∈ D:

Receiver = Receiver0

Receiver b =
∑
d∈D

transdb.Replydb

+
∑
d∈D

transd(1−b).reply1−b.Receiver b

+ trans⊥.reply1−bReceiver b
Replydb = deliverd.replyb.Receiver1−b
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The Overall System
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The overall system is given by

ABP(
−−−−→
accept ,

−−−−→
deliver) = newL (Sender ‖ Trans ‖ Ack ‖ Receiver)

where

L := {senddb, transdb, replyb, ack b | db ∈ F} ∪ {trans⊥, ack⊥}
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Correctness of the ABP I

Theorem 10.1

ABP(
−−−−→
accept ,

−−−−→
deliver) ' Buffer(

−−−−→
accept ,

−−−−→
deliver)

Remark: because of internal τ -steps in ABP , ABP ∼ Buffer cannot
hold.

Proof.

1 Construct transition system of ABP(
−−−−→
accept ,

−−−−→
deliver)

(next slide; S = Sender , W = Wait , T = Trans, A = Ack ,
R = Receiver/Reply , d, e ∈ D; without restrictions)

2 Show that ABP(
−−−−→
accept ,

−−−−→
deliver) ≈ Buffer(

−−−−→
accept ,

−−−−→
deliver)

3 ABP(
−−−−→
accept ,

−−−−→
deliver) 6 τ−→ and Buffer(

−−−−→
accept ,

−−−−→
deliver) 6 τ−→

=⇒ ABP(
−−−−→
accept ,

−−−−→
deliver) ' Buffer(

−−−−→
accept ,

−−−−→
deliver)
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Correctness of the ABP II

Proof (continued).
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ABP ≈ Buffer

Buffer ≈
S0 ‖ T ‖ A ‖ R0

Buffer ≈
S1 ‖ T ‖ A ‖ R1

Bufferd ≈
Wd0 ‖ T ‖ A ‖ Rd0

Buffere ≈
We1 ‖ T ‖ A ‖ Re1

@
@@Racceptd

acceptd

τ〈sendd0〉 τ〈transd0〉

accepteτ〈sende1〉τ〈transe1〉

deliverd

τ〈reply0〉

delivere

τ〈reply1〉

τ〈reply1〉

τ〈transd0〉

τ〈sendd0〉

τ〈reply0〉

τ〈trans⊥〉

τ〈trans⊥〉

τ〈trans⊥〉

τ〈trans⊥〉

τ〈transe1〉

τ〈sende1〉

τ〈ack⊥〉

τ〈ack⊥〉

τ〈ack⊥〉

τ〈ack⊥〉

τ〈ack0〉τ〈ack0〉

τ〈ack1〉 τ〈ack1〉
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Duplication of Messages I

Duplication of messages can be modelled as follows:

Trans =
∑
f∈F

sendf .(transf .Trans︸ ︷︷ ︸
successful

+

trans⊥.Trans︸ ︷︷ ︸
error

+

transf .transf .Trans︸ ︷︷ ︸
duplication

)

Ack =
∑

b∈{0,1}

replyb.(ack b.Ack︸ ︷︷ ︸
successful

+ ack⊥.Ack︸ ︷︷ ︸
error

+ ack b.ack b.Ack︸ ︷︷ ︸
duplication

)
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Duplication of Messages II
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Now the ABP behaves as follows (without restriction):

Sender b =
∑
d∈D

acceptd.SenddbSenddb = senddb.WaitdbReceiver b =
∑
d∈D

transdb.Replydb+. . .Replydb = deliverd.replyb.Receiver1−bReplydb = deliverd.replyb.Receiver1−bWaitdb = ack b.Sender1−b+ack1−b.Senddb+ack⊥.SenddbReceiver b = . . .+
∑
d∈D

transd(1−b).reply1−b.Receiver bSender b =
∑
d∈D

acceptd.SenddbSenddb = senddb.WaitdbWaitdb = ack b.Sender1−b+ack1−b.Senddb+ack⊥.SenddbReceiver b = . . .+
∑
d∈D

transd(1−b).reply1−b.Receiver bReceiver b =
∑
d∈D

transdb.Replydb+. . .Replydb = deliverd.replyb.Receiver1−b

Trans =
∑
f∈F

sendf .(transf .Trans+trans⊥.Trans+transf .transf .Trans)Trans =
∑
f∈F

sendf .(transf .Trans+trans⊥.Trans+transf .transf .Trans)Ack =
∑

b∈{0,1}

replyb.(ack b.Ack+ack⊥.Ack+ack b.ack b.Ack)Ack =
∑

b∈{0,1}

replyb.(ack b.Ack+ack⊥.Ack+ack b.ack b.Ack)Trans =
∑
f∈F

sendf .(transf .Trans+trans⊥.Trans+transf .transf .Trans)Trans =
∑
f∈F

sendf .(transf .Trans+trans⊥.Trans+transf .transf .Trans)Ack =
∑

b∈{0,1}

replyb.(ack b.Ack+ack⊥.Ack+ack b.ack b.Ack)Ack =
∑

b∈{0,1}

replyb.(ack b.Ack+ack⊥.Ack+ack b.ack b.Ack)Trans =
∑
f∈F

sendf .(transf .Trans+trans⊥.Trans+transf .transf .Trans)

Sender0 ‖ Trans ‖ Ack ‖ Receiver0Sendd0 ‖ Trans ‖ Ack ‖ Receiver0Waitd0 ‖ (. . .+ transd0.transd0.Trans) ‖ Ack ‖ Receiver0Waitd0 ‖ transd0.Trans ‖ Ack ‖ Replyd0Waitd0 ‖ transd0.Trans ‖ Ack ‖ reply0.Receiver1Waitd0 ‖ transd0.Trans ‖ (. . .+ ack0.ack0.Ack) ‖ Receiver1Sender1 ‖ transd0.Trans ‖ ack0.Ack ‖ Receiver1Sender1 ‖ Trans ‖ ack0.Ack ‖ reply0.Receiver1Sende1 ‖ Trans ‖ ack0.Ack ‖ reply0.Receiver1Waite1 ‖ (. . .+ transe1.transe1.Trans) ‖ ack0.Ack ‖ reply0.Receiver1Sende1 ‖ (. . .+ transe1.transe1.Trans) ‖ Ack ‖ reply0.Receiver1Sende1 ‖ (. . .+ transe1.transe1.Trans) ‖ (. . .+ ack0.ack0.Ack) ‖ Receiver1Sende1 ‖ transe1.Trans ‖ (. . .+ ack0.ack0.Ack) ‖ Replye1Sende1 ‖ transe1.Trans ‖ (. . .+ ack0.ack0.Ack) ‖ reply1.Receiver0

↓ acceptdτ〈sendd0〉τ〈transd0〉deliverdτ〈reply0〉τ〈ack0〉τ〈transd0〉accepteτ〈sende1〉τ〈ack0〉τ〈reply0〉τ〈transe1〉delivere

Sendd0 ‖ Trans ‖ Ack ‖ Receiver0Waitd0 ‖ (. . .+ transd0.transd0.Trans) ‖ Ack ‖ Receiver0Waitd0 ‖ transd0.Trans ‖ Ack ‖ Replyd0Waitd0 ‖ transd0.Trans ‖ Ack ‖ reply0.Receiver1Waitd0 ‖ transd0.Trans ‖ (. . .+ ack0.ack0.Ack) ‖ Receiver1Sender1 ‖ transd0.Trans ‖ ack0.Ack ‖ Receiver1Sender1 ‖ Trans ‖ ack0.Ack ‖ reply0.Receiver1Sende1 ‖ Trans ‖ ack0.Ack ‖ reply0.Receiver1Waite1 ‖ (. . .+ transe1.transe1.Trans) ‖ ack0.Ack ‖ reply0.Receiver1Sende1 ‖ (. . .+ transe1.transe1.Trans) ‖ Ack ‖ reply0.Receiver1Sende1 ‖ (. . .+ transe1.transe1.Trans) ‖ (. . .+ ack0.ack0.Ack) ‖ Receiver1Sende1 ‖ transe1.Trans ‖ (. . .+ ack0.ack0.Ack) ‖ Replye1Sende1 ‖ transe1.Trans ‖ (. . .+ ack0.ack0.Ack) ‖ reply1.Receiver0?

Deadlock =⇒ ABP cannot handle this
Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 16


	Repetition: The Alternating Bit Protocol
	Implementation of the Alternating Bit Protocol
	Analysis of the Alternating Bit Protocol
	Extension: Duplication of Messages

