Modeling Concurrent and Probabilistic Systems

Lecture 11: Extensions of the Alternating Bit Protocol

Joost-Pieter Katoen Thomas Noll

Software Modeling and Verification Group
RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/mcps07/

Winter Semester 2007/08

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/mcps07/

@ Repetition: The Alternating Bit Protocol

m ing i ter Semester :

Repetition: The Alternating Bit Protocol

Trans

W rans
accept i
ack ‘{ply
Ack

The overall system is given by
ABP (accept, deliver) = new L (Sender || Trans || Ack || Receiver)
where

L := {send gy, trans gy, replyy, acky | db € F} U {trans, ,ack,}

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08

Repetition: Implementation of Sender

accept X deliver
- -

ook~ wTeply

D

Sender accepts d € D via accept,; and repeatedly sends frames of the
form dO over Trans until it receives the acknowledgment 0 over Ack.
For the next data item, control bit 1 is used and so on

(= “Alternating Bit Protocol”).

Formally, for b € {0,1} and d € D:

Sender = Sendery
Sender, = Z accept g.Send gp
deD
Sendg, = sendgy. Waitg,
Waitgqy, = ackp.Senderi_p+ acki_p.Sendg, + ack | .Sendg,

successful error

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08

Repetition: Implementation of Receiver

Receiver gets frames of the form db or L. In the first case, if b has the
expected value, d is forwarded via delivery, and b is returned via Ack.
Otherwise the transmission is re-initiated by returning the “wrong”
control bit 1 — b to Sender.

Formally, for b € {0,1} and d € D:

Receiver = Recetvery
Receivery, = Z transgy. Reply g
deD

+ Ztmnsd(l_b).replyl_b.Recez'verb
deD

+ trans, .reply,_,Receivery,

Replyy, = deliverg.reply,. Receiveri_p

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08

Repetition: Correctness of ABP 1

Theorem

ABP (accept, deliver) ~ Buffer(accept, deliver)

Remark: because of internal 7-steps in ABP, ABP ~ Buffer cannot
hold.

Proof.

|
|

@ Construct transition system of ABP (accept, deliver)
(next slide; S = Sender, W = Wait, T = Trans, A = Ack,
R = Receiver/Reply, d,e € D; without restrictions)

@ Show that ABP(accept, deliver) ~ Buffer(accept, deliver)
@ ABP(accept, deliver) £~ and Buffer(accept, deliver) /—
-, -
—> ABP(accept, deliver) ~ Buffer(accept, deliver)

m“ Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08

Repetition: Correctness of ABP 11

Proof (continued).

ABP

cheptd
So | T || A || Ro—aceepta 2 _T(sendan), _7{transao), vy, || 7 || A || Ray

k
T{ack) (trans)
T(acky) 7(ack1) deliver g
T(ack |) Tirepiy1 T(transy)
b T(transgo
7(reply1) (sende1) T(sendgp) T (replyo)
r{transei) T(ack,)y
-— -—
b-(trans) 7 {replyo)
delivere {acko) T (acko)
T(trans,) rlack,)
/
Wer | T || A || Rey <lrenset) | Tlsender) ¥, _acceple Vg, | 7 A | Ry

Modeling Concurrent and Probabilistic Systems

Winter Semester 2007/08

Repetition: Correctness of ABP 11

Proof (continued).

ABP =~ Buffer
Buffer ~ %‘ceptd Buffer; ~
~ s d ™~
So | T || A || Ro—aceepta 2 _T(sendan), _7{transao), vy, || 7 || A || Ray
k
T{ack) (trans)
T(acky) 7(ack1) deliver g
T(ack |) Tirepiy1 T(transy)
b T(transgo
7(reply1) (sende1) T(sendgp) T (replyo)
r{transei) T(ack,)y
-— -—
b-(trans) 7 {replyo)
delivere {acko) T (acko)
T(trans,)
Buffer, ~ p 7(ack) Buffer ~
/
Wer | T || Al Rex Ttranse) | 7(sende1) Y _ accept. Syl Tl Al R

m“ Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08

Repetition: Duplication of Messages

Duplication of messages can be modelled as follows:

Trans = g send ¢.(trans ¢. Trans +
—_——
fer

successful
trans | . Trans +
~—_—

error
trans .trans . Trans)

duplication

Z reply,.(acky. Ack + ack) . Ack + acky.acky,. Ack)
be{0,1} ’ o

Ack =

successful error duplication

Observation: with the original definition of Sender and Receiver,
deadlocks are possible

Modeling Concurrent and Probabilistic Systems

Winter Semester 2007/08

© Handling Duplication of Messages

m ing i ter Semester :

Handling Duplication of Messages

o Idea: allow Sender and Receiver to transmit 1 frames:
. reply | .
e Receiver — : message not received
end |

o Sender "5 : acknowledgment not received

o Allows to distinguish corrupted and duplicated frames

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08

Modified Implementation of Sender

sen Tans

accept i

Ack

For b € {0,1} and d € D:

Sender = Senderg

m Modeling Concurrent and Probabilistic Systems Winter Semester 2

Modified Implementation of Sender

sen Tans

accept . deliver
— (Sender (Receiver | —

ot~ areply

Ack
For b € {0,1} and d € D:
Sender = Senderg
Sender, = Z accept g.Send gy
deD

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08

Modified Implementation of Sender

sen Tans

accept . deliver
— (Sender (Receiver | —

ot~ areply

Ack
For b € {0,1} and d € D:
Sender = Senderg
Sender, = Z accept g.Send gy
deD
Sendg, = sendg. Waitg

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08

Modified Implementation of Sender

sen \@ﬁs
j@ck\ ‘{ply
Ack
For b € {0,1} and d € D:
Sender = Senderg
Sender, = E accept g.Send gy
deD
Sendg, = sendg. Waitg
Waitgy = acky.Senderi_y+ ack | .Sendg, + ackq_y. Wait g
successful error, restart duplication, ignore

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08

Modified Implementation of Receiver

For b€ {0,1} and d € D:

Receiver = Recetvery

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 12

Modified Implementation of Receiver

For b€ {0,1} and d € D:

Receiver = Recetvery
Receiver, = Z transay. Reply g
deD

+ trans) .reply | . Receivery,

+ E trans q(1—p)- Recewvery,
deD

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08

Modified Implementation of Receiver

For b€ {0,1} and d € D:

Receiver = Recetvery
Receiver, = Z transay. Reply g
deD

+ trans) .reply | . Receivery,

+ E trans q(1—p)- Recewvery,
deD

Replyy, = deliverg.reply,. Receiveri_p

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08

The Overall System

ABP (accept, deliver)
= new L (Sender || Trans || Ack || Receiver)

Sender = Sender
Sendery =) ;o accepty.Send gy

Send g, = sendgp. Wait g,

Wait g, = acky.Senderi_p + ack | .Sendgy + acki_p. Wait g

Recewwer = Recetvery
Receivery, =) cp trans . Reply 4
+ trans .reply | . Receivery
+ Y _gep transg_y)- Receivery,
Reply g, = deliverq.reply,. Receiveri_y

Trans =) ;e sendy.(transy. Trans + trans | . Trans +
trans .trans . Trans)
Ack = Zbe{o,l} replyy.(acky. Ack + acky . Ack + acky.acky. Ack)
where L := {send g, transa, reply,, acky | db € F'}
U {send,trans, reply , ack, }

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 13

Correctness of the Modification

Again:

ABP (accept, deliver) ~ Buffer(accept, deliver)

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 14

Correctness of the Modification

Again:
Theorem 11.1

ABP (accept, deliver) ~ Buffer(accept, deliver)

on the board
(S = Sender/Send, W = Wait, T = Trans, A = Ack,
R = Receiver/Reply, d,e € D; without restrictions) O

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 14

@ Concluding Remarks

m ing Concurrent and Probabilistic S i r S r 2007,/08 15

Concluding Remarks

e Handling loss of messages: by introducing timeouts
(see Tth exercise sheet)

m Modeling Concurrent and Probabilistic S nter Semester

Concluding Remarks

e Handling loss of messages: by introducing timeouts
(see Tth exercise sheet)

e Validity of correctness proof (7-cycles in ABP, but not in Buffer)?

Simplest case:
A(a) =17.A+a.nil ~ B(a)=T.a.nil

Even more: every LTS containing 7-cycles is observationally
congruent to one without 7-cycles

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 16

Concluding Remarks

e Handling loss of messages: by introducing timeouts
(see Tth exercise sheet)

e Validity of correctness proof (7-cycles in ABP, but not in Buffer)?

Simplest case:
A(a) =17.A+a.nil ~ B(a)=T.a.nil

Even more: every LTS containing 7-cycles is observationally
congruent to one without 7-cycles

@ There are notions of equivalence which distinguish divergent
(T-cycles) and convergent (no 7-cycles) processes

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08

Concluding Remarks

e Handling loss of messages: by introducing timeouts
(see Tth exercise sheet)

e Validity of correctness proof (7-cycles in ABP, but not in Buffer)?

Simplest case:
A(a) =17.A+a.nil ~ B(a)=T.a.nil

Even more: every LTS containing 7-cycles is observationally
congruent to one without 7-cycles

@ There are notions of equivalence which distinguish divergent
(T-cycles) and convergent (no 7-cycles) processes
e But:
e they are more complicated than standard bisimulation
o (weak) bisimulation allows the proportion between the speeds of
processes to vary unboundedly — why not infinite?
e if convergence is essential, it can be assured separately

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08

@ Modeling Mobile Concurrent Systems

m ing i ter Semester :

Mobility in Concurrent Systems I

Observation: CCS imposes a static communication structure: if
P,@Q € Prc want to communicate, then both must syntactically refer to
the same action name

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 18

Mobility in Concurrent Systems I

Observation: CCS imposes a static communication structure: if
P,@Q € Prc want to communicate, then both must syntactically refer to
the same action name

— every potential communication partner known beforehand,
no dynamic passing of communication links

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 18

Mobility in Concurrent Systems I

Observation: CCS imposes a static communication structure: if
P,@Q € Prc want to communicate, then both must syntactically refer to
the same action name

— every potential communication partner known beforehand,
no dynamic passing of communication links

= no mobility

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 18

Mobility in Concurrent Systems I

Observation: CCS imposes a static communication structure: if
P,@Q € Prc want to communicate, then both must syntactically refer to
the same action name

— every potential communication partner known beforehand,
no dynamic passing of communication links

= no mobility

Goal: develop calculus in the spirit of CCS which supports mobility

— m-calculus

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 18

Mobility in Concurrent Systems II

Example 11.2 (Dynamic access to resources)

@ Server S controls access to printer P
o Client C' wishes to use P

m“ Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 19

Mobility in Concurrent Systems II

Example 11.2 (Dynamic access to resources)

@ Server S controls access to printer P
o Client C' wishes to use P

o In CCS: P and C must share some action name a
=—> C could access P without being granted it by S

m“ Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 19

Mobility in Concurrent Systems II

Example 11.2 (Dynamic access to resources)

Server S controls access to printer P
Client C' wishes to use P

o In CCS: P and C must share some action name a
=—> C could access P without being granted it by S

In m-calculus :

o initially only S has access to P (using link a)
e using another link b, C' can request access to P

m“ Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08

Mobility in Concurrent Systems II

Example 11.2 (Dynamic access to resources)

Server S controls access to printer P
Client C' wishes to use P

o In CCS: P and C must share some action name a
=—> C could access P without being granted it by S

In m-calculus :

o initially only S has access to P (using link a)
e using another link b, C' can request access to P

Formally:

a: link to P
o b: link between S and C

B(a).S" || b(c).e(d).C" || ale).P’

c: “placeholder” for a

d: data to be printed

e: “placeholder” for d

m“ Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08

Mobility in Concurrent Systems II

Example 11.2 (Dynamic access to resources)

Server S controls access to printer P
Client C' wishes to use P

o In CCS: P and C must share some action name a
=—> C could access P without being granted it by S

In m-calculus :

o initially only S has access to P (using link a)
e using another link b, C' can request access to P

Formally:

a: link to P
o b: link between S and C

b{a).S" || b(c).&d).C" || ale).P’
—_—— —]— V——

S

(& P
s 8" a(d).C" || a(e).P’

c: “placeholder” for a

d: data to be printed

e: “placeholder” for d

m“ Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08

Mobility in Concurrent Systems II

Example 11.2 (Dynamic access to resources)

@ Server S controls access to printer P
o Client C' wishes to use P

o In CCS: P and C must share some action name a
=—> C could access P without being granted it by S
@ In m-calculus :

o initially only S has access to P (using link a)
e using another link b, C' can request access to P

e Formally:
a: link to P
o b: link between S and C

B(a).S" || b(c).&{d).C" || ale).P’
—_—— —— V——

S (& P
I, g | @(d).C" || a(e).P’ e c: “placeholder” for a
T 8| C" || Plew d] o d: data to be printed
e e: “placeholder” for d

m“ Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08

Mobility in Concurrent Systems III

Example 11.2 (Dynamic access to resources; continued)

o Different roles of action name a:
e in interaction between S and C:
object transferred from S to C
e in interaction between C' and P:
name of communication link

lmH Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 20

Mobility in Concurrent Systems III

Example 11.2 (Dynamic access to resources; continued)

o Different roles of action name a:
e in interaction between S and C:
object transferred from S to C
e in interaction between C' and P:
name of communication link
o Intuitively, names represent access rights:
e a: for P
e b: for S
e d: for data to be printed

lmH Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08

Mobility in Concurrent Systems III

Example 11.2 (Dynamic access to resources; continued)

o Different roles of action name a:
e in interaction between S and C:
object transferred from S to C
e in interaction between C' and P:
name of communication link
o Intuitively, names represent access rights:
e a: for P
e b: for S
e d: for data to be printed

o If a is only way to access P
= P “moves” from S to C

lmH Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08

	Repetition: The Alternating Bit Protocol
	Handling Duplication of Messages
	Concluding Remarks
	Modeling Mobile Concurrent Systems

