
Modeling Concurrent and Probabilistic Systems
Lecture 11: Extensions of the Alternating Bit Protocol

Joost-Pieter Katoen Thomas Noll

Software Modeling and Verification Group
RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/mcps07/

Winter Semester 2007/08

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/mcps07/

Outline

1 Repetition: The Alternating Bit Protocol

2 Handling Duplication of Messages

3 Concluding Remarks

4 Modeling Mobile Concurrent Systems

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 2

Repetition: The Alternating Bit Protocol

�
 �	
�
 �	
�
 �	

�
 �	���1 PPPq

���)PPPi
--accept

send trans

ack reply

deliver
Sender

Trans

Receiver

Ack

The overall system is given by

ABP(
−−−−→
accept ,

−−−−→
deliver) = newL (Sender ‖ Trans ‖ Ack ‖ Receiver)

where

L := {senddb, transdb, replyb, ack b | db ∈ F} ∪ {trans⊥, ack⊥}

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 3

Repetition: Implementation of Sender

�
 �	
�
 �	
�
 �	

�
 �	���1 PPPq

���)PPPi
--accept

send trans

ack reply

deliver
Sender

Trans

Receiver

Ack

Sender accepts d ∈ D via acceptd and repeatedly sends frames of the
form d0 over Trans until it receives the acknowledgment 0 over Ack .
For the next data item, control bit 1 is used and so on
(=⇒ “Alternating Bit Protocol”).

Formally, for b ∈ {0, 1} and d ∈ D:

Sender = Sender0

Sender b =
∑
d∈D

acceptd.Senddb

Senddb = senddb.Waitdb
Waitdb = ack b.Sender1−b︸ ︷︷ ︸

successful

+ ack1−b.Senddb + ack⊥.Senddb︸ ︷︷ ︸
error

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 4

Repetition: Implementation of Receiver

Receiver gets frames of the form db or ⊥. In the first case, if b has the
expected value, d is forwarded via deliverd, and b is returned via Ack .
Otherwise the transmission is re-initiated by returning the “wrong”
control bit 1− b to Sender .

Formally, for b ∈ {0, 1} and d ∈ D:

Receiver = Receiver0

Receiver b =
∑
d∈D

transdb.Replydb

+
∑
d∈D

transd(1−b).reply1−b.Receiver b

+ trans⊥.reply1−bReceiver b
Replydb = deliverd.replyb.Receiver1−b

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 5

Repetition: Correctness of ABP I

Theorem

ABP(
−−−−→
accept ,

−−−−→
deliver) ' Buffer(

−−−−→
accept ,

−−−−→
deliver)

Remark: because of internal τ -steps in ABP , ABP ∼ Buffer cannot
hold.

Proof.

1 Construct transition system of ABP(
−−−−→
accept ,

−−−−→
deliver)

(next slide; S = Sender , W = Wait , T = Trans, A = Ack ,
R = Receiver/Reply , d, e ∈ D; without restrictions)

2 Show that ABP(
−−−−→
accept ,

−−−−→
deliver) ≈ Buffer(

−−−−→
accept ,

−−−−→
deliver)

3 ABP(
−−−−→
accept ,

−−−−→
deliver) 6 τ−→ and Buffer(

−−−−→
accept ,

−−−−→
deliver) 6 τ−→

=⇒ ABP(
−−−−→
accept ,

−−−−→
deliver) ' Buffer(

−−−−→
accept ,

−−−−→
deliver)

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 6

Repetition: Correctness of ABP II

Proof (continued).

� � � ?

?

?

6

6

6

?�

6

�

6

-

?

-

6

-

?�

ABP ≈ Buffer

Buffer ≈
S0 ‖ T ‖ A ‖ R0

Buffer ≈
S1 ‖ T ‖ A ‖ R1

Bufferd ≈
Wd0 ‖ T ‖ A ‖ Rd0

Buffere ≈
We1 ‖ T ‖ A ‖ Re1

@
@@Racceptd

acceptd

τ〈sendd0〉 τ〈transd0〉

accepteτ〈sende1〉τ〈transe1〉

deliverd

τ〈reply0〉

delivere

τ〈reply1〉

τ〈reply1〉

τ〈transd0〉

τ〈sendd0〉

τ〈reply0〉

τ〈trans⊥〉

τ〈trans⊥〉

τ〈trans⊥〉

τ〈trans⊥〉

τ〈transe1〉

τ〈sende1〉

τ〈ack⊥〉

τ〈ack⊥〉

τ〈ack⊥〉

τ〈ack⊥〉

τ〈ack0〉τ〈ack0〉

τ〈ack1〉 τ〈ack1〉

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 7

Repetition: Duplication of Messages

Duplication of messages can be modelled as follows:

Trans =
∑
f∈F

sendf .(transf .Trans︸ ︷︷ ︸
successful

+

trans⊥.Trans︸ ︷︷ ︸
error

+

transf .transf .Trans︸ ︷︷ ︸
duplication

)

Ack =
∑

b∈{0,1}

replyb.(ack b.Ack︸ ︷︷ ︸
successful

+ ack⊥.Ack︸ ︷︷ ︸
error

+ ack b.ack b.Ack︸ ︷︷ ︸
duplication

)

Observation: with the original definition of Sender and Receiver ,
deadlocks are possible

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 8

Outline

1 Repetition: The Alternating Bit Protocol

2 Handling Duplication of Messages

3 Concluding Remarks

4 Modeling Mobile Concurrent Systems

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 9

Handling Duplication of Messages

Idea: allow Sender and Receiver to transmit ⊥ frames:
Receiver

reply⊥−→ : message not received
Sender send⊥−→ : acknowledgment not received

Allows to distinguish corrupted and duplicated frames

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 10

Modified Implementation of Sender

�
 �	
�
 �	
�
 �	

�
 �	���1 PPPq

���)PPPi
--accept

send trans

ack reply

deliver
Sender

Trans

Receiver

Ack

For b ∈ {0, 1} and d ∈ D:

Sender = Sender0

Sender b =
∑
d∈D

acceptd.Senddb

Senddb = senddb.Waitdb
Waitdb = ack b.Sender1−b︸ ︷︷ ︸

successful

+ ack⊥.Senddb︸ ︷︷ ︸
error, restart

+ ack1−b.Waitdb︸ ︷︷ ︸
duplication, ignore

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 11

Modified Implementation of Receiver

For b ∈ {0, 1} and d ∈ D:

Receiver = Receiver0

Receiver b =
∑
d∈D

transdb.Replydb

+ trans⊥.reply⊥.Receiver b
+

∑
d∈D

transd(1−b).Receiver b

Replydb = deliverd.replyb.Receiver1−b

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 12

The Overall System

ABP(
−−−−→
accept ,

−−−−→
deliver)

= newL (Sender ‖ Trans ‖ Ack ‖ Receiver)

Sender = Sender0

Sender b =
∑

d∈D acceptd.Senddb
Senddb = senddb.Waitdb
Waitdb = ack b.Sender1−b + ack⊥.Senddb + ack1−b.Waitdb

Receiver = Receiver0

Receiver b =
∑

d∈D transdb.Replydb
+ trans⊥.reply⊥.Receiver b
+

∑
d∈D transd(1−b).Receiver b

Replydb = deliverd.replyb.Receiver1−b

Trans =
∑

f∈F sendf .(transf .Trans + trans⊥.Trans +
transf .transf .Trans)

Ack =
∑

b∈{0,1} replyb.(ack b.Ack + ack⊥.Ack + ack b.ack b.Ack)
where L := {senddb, transdb, replyb, ack b | db ∈ F}

∪ {send⊥, trans⊥, reply⊥, ack⊥}
Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 13

Correctness of the Modification

Again:

Theorem 11.1

ABP(
−−−−→
accept ,

−−−−→
deliver) ' Buffer(

−−−−→
accept ,

−−−−→
deliver)

Proof.

on the board
(S = Sender/Send , W = Wait , T = Trans, A = Ack ,
R = Receiver/Reply , d, e ∈ D; without restrictions)

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 14

Outline

1 Repetition: The Alternating Bit Protocol

2 Handling Duplication of Messages

3 Concluding Remarks

4 Modeling Mobile Concurrent Systems

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 15

Concluding Remarks

Handling loss of messages: by introducing timeouts
(see 7th exercise sheet)
Validity of correctness proof (τ -cycles in ABP , but not in Buffer)?

Simplest case:

A(a) = τ.A+ a.nil ' B(a) = τ.a.nil

Even more: every LTS containing τ -cycles is observationally
congruent to one without τ -cycles
There are notions of equivalence which distinguish divergent
(τ -cycles) and convergent (no τ -cycles) processes
But:

they are more complicated than standard bisimulation
(weak) bisimulation allows the proportion between the speeds of
processes to vary unboundedly – why not infinite?
if convergence is essential, it can be assured separately

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 16

Outline

1 Repetition: The Alternating Bit Protocol

2 Handling Duplication of Messages

3 Concluding Remarks

4 Modeling Mobile Concurrent Systems

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 17

Mobility in Concurrent Systems I

Observation: CCS imposes a static communication structure: if
P,Q ∈ Prc want to communicate, then both must syntactically refer to
the same action name

=⇒ every potential communication partner known beforehand,
no dynamic passing of communication links

=⇒ no mobility

Goal: develop calculus in the spirit of CCS which supports mobility

=⇒ π-calculus

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 18

Mobility in Concurrent Systems II

Example 11.2 (Dynamic access to resources)

Server S controls access to printer P
Client C wishes to use P
In CCS: P and C must share some action name a
=⇒ C could access P without being granted it by S

In π-calculus :
initially only S has access to P (using link a)
using another link b, C can request access to P

Formally:

b〈a〉.S′︸ ︷︷ ︸
S

‖ b(c).c〈d〉.C ′︸ ︷︷ ︸
C

‖ a(e).P ′︸ ︷︷ ︸
P

τ−→ S′ ‖ a〈d〉.C ′ ‖ a(e).P ′
τ−→ S′ ‖ C ′ ‖ P ′[e 7→ d]

a: link to P

b: link between S and C

c: “placeholder” for a

d: data to be printed

e: “placeholder” for d
Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 19

Mobility in Concurrent Systems III

Example 11.2 (Dynamic access to resources; continued)

Different rôles of action name a:
in interaction between S and C:
object transferred from S to C
in interaction between C and P :
name of communication link

Intuitively, names represent access rights:
a: for P
b: for S
d: for data to be printed

If a is only way to access P
=⇒ P “moves” from S to C

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 20

	Repetition: The Alternating Bit Protocol
	Handling Duplication of Messages
	Concluding Remarks
	Modeling Mobile Concurrent Systems

