
Modeling Concurrent and Probabilistic Systems
Lecture 12: The Monadic π-Calculus

Joost-Pieter Katoen Thomas Noll

Software Modeling and Verification Group
RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/mcps07/

Winter Semester 2007/08

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/mcps07/


Outline

1 Repetition: Modeling Mobile Concurrent Systems

2 Another Example: Mobile Clients

3 The Monadic π-Calculus

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 2



Repetition: Mobility in Concurrent Systems I

Observation: CCS imposes a static communication structure: if
P,Q ∈ Prc want to communicate, then both must syntactically refer to
the same action name

=⇒ every potential communication partner known beforehand,
no dynamic passing of communication links

=⇒ no mobility

Goal: develop calculus in the spirit of CCS which supports mobility

=⇒ π-calculus

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 3



Repetition: Mobility in Concurrent Systems II

Example (Dynamic access to resources)

Server S controls access to printer P
Client C wishes to use P
In CCS: P and C must share some action name a
=⇒ C could access P without being granted it by S

In π-calculus :
initially only S has access to P (using link a)
using another link b, C can request access to P

Formally:

b〈a〉.S′︸ ︷︷ ︸
S

‖ b(c).c〈d〉.C ′︸ ︷︷ ︸
C

‖ a(e).P ′︸ ︷︷ ︸
P

τ−→ S′ ‖ a〈d〉.C ′ ‖ a(e).P ′
τ−→ S′ ‖ C ′ ‖ P ′[e 7→ d]

a: link to P

b: link between S and C

c: “placeholder” for a

d: data to be printed

e: “placeholder” for d
Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 4



Repetition: Mobility in Concurrent Systems II

Example (Dynamic access to resources)

Server S controls access to printer P
Client C wishes to use P
In CCS: P and C must share some action name a
=⇒ C could access P without being granted it by S

In π-calculus :
initially only S has access to P (using link a)
using another link b, C can request access to P

Formally:

b〈a〉.S′︸ ︷︷ ︸
S

‖ b(c).c〈d〉.C ′︸ ︷︷ ︸
C

‖ a(e).P ′︸ ︷︷ ︸
P

τ−→ S′ ‖ a〈d〉.C ′ ‖ a(e).P ′
τ−→ S′ ‖ C ′ ‖ P ′[e 7→ d]

a: link to P

b: link between S and C

c: “placeholder” for a

d: data to be printed

e: “placeholder” for d
Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 4



Repetition: Mobility in Concurrent Systems II

Example (Dynamic access to resources)

Server S controls access to printer P
Client C wishes to use P
In CCS: P and C must share some action name a
=⇒ C could access P without being granted it by S

In π-calculus :
initially only S has access to P (using link a)
using another link b, C can request access to P

Formally:

b〈a〉.S′︸ ︷︷ ︸
S

‖ b(c).c〈d〉.C ′︸ ︷︷ ︸
C

‖ a(e).P ′︸ ︷︷ ︸
P

τ−→ S′ ‖ a〈d〉.C ′ ‖ a(e).P ′
τ−→ S′ ‖ C ′ ‖ P ′[e 7→ d]

a: link to P

b: link between S and C

c: “placeholder” for a

d: data to be printed

e: “placeholder” for d
Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 4



Repetition: Mobility in Concurrent Systems II

Example (Dynamic access to resources)

Server S controls access to printer P
Client C wishes to use P
In CCS: P and C must share some action name a
=⇒ C could access P without being granted it by S

In π-calculus :
initially only S has access to P (using link a)
using another link b, C can request access to P

Formally:

b〈a〉.S′︸ ︷︷ ︸
S

‖ b(c).c〈d〉.C ′︸ ︷︷ ︸
C

‖ a(e).P ′︸ ︷︷ ︸
P

τ−→ S′ ‖ a〈d〉.C ′ ‖ a(e).P ′
τ−→ S′ ‖ C ′ ‖ P ′[e 7→ d]

a: link to P

b: link between S and C

c: “placeholder” for a

d: data to be printed

e: “placeholder” for d
Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 4



Repetition: Mobility in Concurrent Systems II

Example (Dynamic access to resources)

Server S controls access to printer P
Client C wishes to use P
In CCS: P and C must share some action name a
=⇒ C could access P without being granted it by S

In π-calculus :
initially only S has access to P (using link a)
using another link b, C can request access to P

Formally:

b〈a〉.S′︸ ︷︷ ︸
S

‖ b(c).c〈d〉.C ′︸ ︷︷ ︸
C

‖ a(e).P ′︸ ︷︷ ︸
P

τ−→ S′ ‖ a〈d〉.C ′ ‖ a(e).P ′
τ−→ S′ ‖ C ′ ‖ P ′[e 7→ d]

a: link to P

b: link between S and C

c: “placeholder” for a

d: data to be printed

e: “placeholder” for d
Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 4



Repetition: Mobility in Concurrent Systems II

Example (Dynamic access to resources)

Server S controls access to printer P
Client C wishes to use P
In CCS: P and C must share some action name a
=⇒ C could access P without being granted it by S

In π-calculus :
initially only S has access to P (using link a)
using another link b, C can request access to P

Formally:

b〈a〉.S′︸ ︷︷ ︸
S

‖ b(c).c〈d〉.C ′︸ ︷︷ ︸
C

‖ a(e).P ′︸ ︷︷ ︸
P

τ−→ S′ ‖ a〈d〉.C ′ ‖ a(e).P ′
τ−→ S′ ‖ C ′ ‖ P ′[e 7→ d]

a: link to P

b: link between S and C

c: “placeholder” for a

d: data to be printed

e: “placeholder” for d
Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 4



Repetition: Mobility in Concurrent Systems III

Example (Dynamic access to resources; continued)

Different rôles of action name a:
in interaction between S and C:
object transferred from S to C
in interaction between C and P :
name of communication link

Intuitively, names represent access rights:
a: for P
b: for S
d: for data to be printed

If a is only way to access P
=⇒ P “moves” from S to C

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 5



Outline

1 Repetition: Modeling Mobile Concurrent Systems

2 Another Example: Mobile Clients

3 The Monadic π-Calculus

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 6



Mobile Clients I

Scenario:

client devices moving around (phones, PCs, sensors, ...)
each radioconnected to some base station
stations wired to central control
some event (e.g., signal fading) may cause a client to be switched
to another station
essential: specification of switching process (“hand-over protocol”)

Simplest case: two stations, one client

Client
talk1↙↗switch1

Station Idle
gain1↖↖lose1 gain2↗↗lose2

Control

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 7



Mobile Clients I

Scenario:

client devices moving around (phones, PCs, sensors, ...)
each radioconnected to some base station
stations wired to central control
some event (e.g., signal fading) may cause a client to be switched
to another station
essential: specification of switching process (“hand-over protocol”)

Simplest case: two stations, one client

Client
talk1↙↗switch1

Station Idle
gain1↖↖lose1 gain2↗↗lose2

Control

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 7



Mobile Clients II

Every station is in one of two modes: Station (active; four links) or Idle
(inactive; two links)

Client can talk via Station, and at any time Control can request
Station/Idle to lose/gain Client :

Station(talk , switch, gain, lose) = talk .Station(talk , switch, gain, lose) +
lose(t, s).switch〈t, s〉.Idle(gain, lose)

Idle(gain, lose) = gain(t, s).Station(t, s, gain, lose)

If Control decides Station to lose Client , it issues a new pair of channels
to be shared by Client and Idle:

Control1 = lose1〈talk2, switch2〉.gain2〈talk2, switch2〉.Control2
Control2 = lose2〈talk1, switch1〉.gain1〈talk1, switch1〉.Control1

Client can either talk or, if requested, switch to a new pair of channels:

Client(talk , switch) = talk .Client(talk , switch) + switch(t, s).Client(t, s)

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 8



Mobile Clients II

Every station is in one of two modes: Station (active; four links) or Idle
(inactive; two links)

Client can talk via Station, and at any time Control can request
Station/Idle to lose/gain Client :

Station(talk , switch, gain, lose) = talk .Station(talk , switch, gain, lose) +
lose(t, s).switch〈t, s〉.Idle(gain, lose)

Idle(gain, lose) = gain(t, s).Station(t, s, gain, lose)

If Control decides Station to lose Client , it issues a new pair of channels
to be shared by Client and Idle:

Control1 = lose1〈talk2, switch2〉.gain2〈talk2, switch2〉.Control2
Control2 = lose2〈talk1, switch1〉.gain1〈talk1, switch1〉.Control1

Client can either talk or, if requested, switch to a new pair of channels:

Client(talk , switch) = talk .Client(talk , switch) + switch(t, s).Client(t, s)

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 8



Mobile Clients II

Every station is in one of two modes: Station (active; four links) or Idle
(inactive; two links)

Client can talk via Station, and at any time Control can request
Station/Idle to lose/gain Client :

Station(talk , switch, gain, lose) = talk .Station(talk , switch, gain, lose) +
lose(t, s).switch〈t, s〉.Idle(gain, lose)

Idle(gain, lose) = gain(t, s).Station(t, s, gain, lose)

If Control decides Station to lose Client , it issues a new pair of channels
to be shared by Client and Idle:

Control1 = lose1〈talk2, switch2〉.gain2〈talk2, switch2〉.Control2
Control2 = lose2〈talk1, switch1〉.gain1〈talk1, switch1〉.Control1

Client can either talk or, if requested, switch to a new pair of channels:

Client(talk , switch) = talk .Client(talk , switch) + switch(t, s).Client(t, s)

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 8



Mobile Clients II

Every station is in one of two modes: Station (active; four links) or Idle
(inactive; two links)

Client can talk via Station, and at any time Control can request
Station/Idle to lose/gain Client :

Station(talk , switch, gain, lose) = talk .Station(talk , switch, gain, lose) +
lose(t, s).switch〈t, s〉.Idle(gain, lose)

Idle(gain, lose) = gain(t, s).Station(t, s, gain, lose)

If Control decides Station to lose Client , it issues a new pair of channels
to be shared by Client and Idle:

Control1 = lose1〈talk2, switch2〉.gain2〈talk2, switch2〉.Control2
Control2 = lose2〈talk1, switch1〉.gain1〈talk1, switch1〉.Control1

Client can either talk or, if requested, switch to a new pair of channels:

Client(talk , switch) = talk .Client(talk , switch) + switch(t, s).Client(t, s)

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 8



Mobile Clients III

As usual, the whole system is a restricted composition of processes:

System1 = newL (Client1 ‖ Station1 ‖ Idle2 ‖ Control1)

where
Client i := Client(talk i, switchi)

Stationi := Station(talk i, switchi, gaini, losei)
Idlei := Idle(gaini, losei)

L := (talk i, switchi, gaini, losei | i ∈ {1, 2})

After having formally defined the π-calculus we will see that this
protocol is correct, i.e., that the hand-over does indeed occur:

System1 −→∗ System2

where

System2 = newL (Client2 ‖ Idle1 ‖ Station2 ‖ Control2)

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 9



Mobile Clients III

As usual, the whole system is a restricted composition of processes:

System1 = newL (Client1 ‖ Station1 ‖ Idle2 ‖ Control1)

where
Client i := Client(talk i, switchi)

Stationi := Station(talk i, switchi, gaini, losei)
Idlei := Idle(gaini, losei)

L := (talk i, switchi, gaini, losei | i ∈ {1, 2})

After having formally defined the π-calculus we will see that this
protocol is correct, i.e., that the hand-over does indeed occur:

System1 −→∗ System2

where

System2 = newL (Client2 ‖ Idle1 ‖ Station2 ‖ Control2)

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 9



Outline

1 Repetition: Modeling Mobile Concurrent Systems

2 Another Example: Mobile Clients

3 The Monadic π-Calculus

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 10



Introduction

Literature on π-calculus:
Initial research paper:
R. Milner, J. Parrow, D. Walker: A calculus of mobile processes,
Part I/II. Journal of Inf. & Comp., 100:1–77, 1992
Overview article:
J. Parrow: An introduction to the π-calculus , Chapter 8 of
Handbook of Process Algebra, 479–543, Elsevier, 2001
Textbook:
R. Milner: Communicating and Mobile Systems: the pi-Calculus.
Cambridge University Press, 1999

To simplify the presentation (as in Milner’s book):
1 Monadic π-calculus with replication

(message = one name, no process identifiers)
2 Extension to polyadic calculus
3 Extension by process equations

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 11



Introduction

Literature on π-calculus:
Initial research paper:
R. Milner, J. Parrow, D. Walker: A calculus of mobile processes,
Part I/II. Journal of Inf. & Comp., 100:1–77, 1992
Overview article:
J. Parrow: An introduction to the π-calculus , Chapter 8 of
Handbook of Process Algebra, 479–543, Elsevier, 2001
Textbook:
R. Milner: Communicating and Mobile Systems: the pi-Calculus.
Cambridge University Press, 1999

To simplify the presentation (as in Milner’s book):
1 Monadic π-calculus with replication

(message = one name, no process identifiers)
2 Extension to polyadic calculus
3 Extension by process equations

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 11



Syntax of the Monadic π-Calculus

Definition 12.1 (Syntax of monadic π-calculus)

Let N = {a, b, c . . . , x, y, z, . . .} be a set of names.
The set of action prefixes is given by

π ::= x(y) (receive y along x)
| x〈y〉 (send y along x)
| τ (unobservable action)

The set P π of π-calculus process expressions is defined by the
following syntax:

P ::=
∑

i∈I πi.Pi (guarded sum)
| P1 ‖ P2 (parallel composition)
| new xP (restriction)
| !P (replication)

(where I finite, x ∈ N )

Conventions:
nil :=

∑
i∈∅ πi.Pi, new x1, . . . , xn P := new x1 (. . . new xn P )

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 12



Syntax of the Monadic π-Calculus

Definition 12.1 (Syntax of monadic π-calculus)

Let N = {a, b, c . . . , x, y, z, . . .} be a set of names.
The set of action prefixes is given by

π ::= x(y) (receive y along x)
| x〈y〉 (send y along x)
| τ (unobservable action)

The set P π of π-calculus process expressions is defined by the
following syntax:

P ::=
∑

i∈I πi.Pi (guarded sum)
| P1 ‖ P2 (parallel composition)
| new xP (restriction)
| !P (replication)

(where I finite, x ∈ N )

Conventions:
nil :=

∑
i∈∅ πi.Pi, new x1, . . . , xn P := new x1 (. . . new xn P )

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 12



Syntax of the Monadic π-Calculus

Definition 12.1 (Syntax of monadic π-calculus)

Let N = {a, b, c . . . , x, y, z, . . .} be a set of names.
The set of action prefixes is given by

π ::= x(y) (receive y along x)
| x〈y〉 (send y along x)
| τ (unobservable action)

The set P π of π-calculus process expressions is defined by the
following syntax:

P ::=
∑

i∈I πi.Pi (guarded sum)
| P1 ‖ P2 (parallel composition)
| new xP (restriction)
| !P (replication)

(where I finite, x ∈ N )

Conventions:
nil :=

∑
i∈∅ πi.Pi, new x1, . . . , xn P := new x1 (. . . new xn P )

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 12



Syntax of the Monadic π-Calculus

Definition 12.1 (Syntax of monadic π-calculus)

Let N = {a, b, c . . . , x, y, z, . . .} be a set of names.
The set of action prefixes is given by

π ::= x(y) (receive y along x)
| x〈y〉 (send y along x)
| τ (unobservable action)

The set P π of π-calculus process expressions is defined by the
following syntax:

P ::=
∑

i∈I πi.Pi (guarded sum)
| P1 ‖ P2 (parallel composition)
| new xP (restriction)
| !P (replication)

(where I finite, x ∈ N )

Conventions:
nil :=

∑
i∈∅ πi.Pi, new x1, . . . , xn P := new x1 (. . . new xn P )

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 12



Free and Bound Names

Definition 12.2 (Free and bound names)

The input prefix x(y) and the restriction new y P both bind y.
Every other occurrrence of a name (i.e., x in x(y) and x, y in x〈y〉)
is free.
The set of bound/free names of a process expressions P ∈ P π is
denoted by bn(P )/fn(P ), resp.

Remark: bn(P ) ∩ fn(P ) 6= ∅ is possible

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 13



Free and Bound Names

Definition 12.2 (Free and bound names)

The input prefix x(y) and the restriction new y P both bind y.
Every other occurrrence of a name (i.e., x in x(y) and x, y in x〈y〉)
is free.
The set of bound/free names of a process expressions P ∈ P π is
denoted by bn(P )/fn(P ), resp.

Remark: bn(P ) ∩ fn(P ) 6= ∅ is possible

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 13



Free and Bound Names

Definition 12.2 (Free and bound names)

The input prefix x(y) and the restriction new y P both bind y.
Every other occurrrence of a name (i.e., x in x(y) and x, y in x〈y〉)
is free.
The set of bound/free names of a process expressions P ∈ P π is
denoted by bn(P )/fn(P ), resp.

Remark: bn(P ) ∩ fn(P ) 6= ∅ is possible

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 13



Free and Bound Names

Definition 12.2 (Free and bound names)

The input prefix x(y) and the restriction new y P both bind y.
Every other occurrrence of a name (i.e., x in x(y) and x, y in x〈y〉)
is free.
The set of bound/free names of a process expressions P ∈ P π is
denoted by bn(P )/fn(P ), resp.

Remark: bn(P ) ∩ fn(P ) 6= ∅ is possible

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 13



Structural Congruence I

Goal: simplify definition of operational semantics by ignoring “purely
syntactic” differences between processes

Definition 12.3 (Structural congruence)

P,Q ∈ P π are structurally congruent, written P ≡ Q, if one can be
transformed into the other by applying the following operations and
equations:

1 renaming of bound names (α-conversion)
2 reordering of terms in a summation (commutativity of +)
3 P ‖ Q ≡ Q ‖ P , P ‖ (Q ‖ R) ≡ (P ‖ Q) ‖ R, P ‖ nil ≡ P

(Abelian monoid laws for ‖)
4 new x nil ≡ nil, new x, y P ≡ new y, xP ,
P ‖ new xQ ≡ new x (P ‖ Q) if x /∈ fn(P ) (scope extension)

5 !P ≡ P ‖!P (unfolding)

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 14



Structural Congruence I

Goal: simplify definition of operational semantics by ignoring “purely
syntactic” differences between processes

Definition 12.3 (Structural congruence)

P,Q ∈ P π are structurally congruent, written P ≡ Q, if one can be
transformed into the other by applying the following operations and
equations:

1 renaming of bound names (α-conversion)
2 reordering of terms in a summation (commutativity of +)
3 P ‖ Q ≡ Q ‖ P , P ‖ (Q ‖ R) ≡ (P ‖ Q) ‖ R, P ‖ nil ≡ P

(Abelian monoid laws for ‖)
4 new x nil ≡ nil, new x, y P ≡ new y, xP ,
P ‖ new xQ ≡ new x (P ‖ Q) if x /∈ fn(P ) (scope extension)

5 !P ≡ P ‖!P (unfolding)

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 14



Structural Congruence I

Goal: simplify definition of operational semantics by ignoring “purely
syntactic” differences between processes

Definition 12.3 (Structural congruence)

P,Q ∈ P π are structurally congruent, written P ≡ Q, if one can be
transformed into the other by applying the following operations and
equations:

1 renaming of bound names (α-conversion)
2 reordering of terms in a summation (commutativity of +)
3 P ‖ Q ≡ Q ‖ P , P ‖ (Q ‖ R) ≡ (P ‖ Q) ‖ R, P ‖ nil ≡ P

(Abelian monoid laws for ‖)
4 new x nil ≡ nil, new x, y P ≡ new y, xP ,
P ‖ new xQ ≡ new x (P ‖ Q) if x /∈ fn(P ) (scope extension)

5 !P ≡ P ‖!P (unfolding)

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 14



Structural Congruence I

Goal: simplify definition of operational semantics by ignoring “purely
syntactic” differences between processes

Definition 12.3 (Structural congruence)

P,Q ∈ P π are structurally congruent, written P ≡ Q, if one can be
transformed into the other by applying the following operations and
equations:

1 renaming of bound names (α-conversion)
2 reordering of terms in a summation (commutativity of +)
3 P ‖ Q ≡ Q ‖ P , P ‖ (Q ‖ R) ≡ (P ‖ Q) ‖ R, P ‖ nil ≡ P

(Abelian monoid laws for ‖)
4 new x nil ≡ nil, new x, y P ≡ new y, xP ,
P ‖ new xQ ≡ new x (P ‖ Q) if x /∈ fn(P ) (scope extension)

5 !P ≡ P ‖!P (unfolding)

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 14



Structural Congruence I

Goal: simplify definition of operational semantics by ignoring “purely
syntactic” differences between processes

Definition 12.3 (Structural congruence)

P,Q ∈ P π are structurally congruent, written P ≡ Q, if one can be
transformed into the other by applying the following operations and
equations:

1 renaming of bound names (α-conversion)
2 reordering of terms in a summation (commutativity of +)
3 P ‖ Q ≡ Q ‖ P , P ‖ (Q ‖ R) ≡ (P ‖ Q) ‖ R, P ‖ nil ≡ P

(Abelian monoid laws for ‖)
4 new x nil ≡ nil, new x, y P ≡ new y, xP ,
P ‖ new xQ ≡ new x (P ‖ Q) if x /∈ fn(P ) (scope extension)

5 !P ≡ P ‖!P (unfolding)

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 14



Structural Congruence I

Goal: simplify definition of operational semantics by ignoring “purely
syntactic” differences between processes

Definition 12.3 (Structural congruence)

P,Q ∈ P π are structurally congruent, written P ≡ Q, if one can be
transformed into the other by applying the following operations and
equations:

1 renaming of bound names (α-conversion)
2 reordering of terms in a summation (commutativity of +)
3 P ‖ Q ≡ Q ‖ P , P ‖ (Q ‖ R) ≡ (P ‖ Q) ‖ R, P ‖ nil ≡ P

(Abelian monoid laws for ‖)
4 new x nil ≡ nil, new x, y P ≡ new y, xP ,
P ‖ new xQ ≡ new x (P ‖ Q) if x /∈ fn(P ) (scope extension)

5 !P ≡ P ‖!P (unfolding)

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 14



Structural Congruence II

Corollary 12.4 (Structural congruence)

≡ is a congruence relation on P π, i.e., if P ≡ Q then
1 π.P +R ≡ π.Q+R

2 P ‖ R ≡ Q ‖ R and R ‖ P ≡ R ‖ Q
3 new xP ≡ new xQ

4 !P ≡!Q

Proof.

apply operations and equations for ≡ within respective contexts

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 15



Structural Congruence II

Corollary 12.4 (Structural congruence)

≡ is a congruence relation on P π, i.e., if P ≡ Q then
1 π.P +R ≡ π.Q+R

2 P ‖ R ≡ Q ‖ R and R ‖ P ≡ R ‖ Q
3 new xP ≡ new xQ

4 !P ≡!Q

Proof.

apply operations and equations for ≡ within respective contexts

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 15



A Standard Form

Theorem 12.5 (Standard form)

Every process expression is structurally congruent to a process of the
standard form

new x1, . . . , xk (P1 ‖ . . . ‖ Pm ‖ !Q1 ‖ . . . ‖ !Qn)

where each Pi is a non-empty sum, and each Qj is in standard form.

(If m = n = 0: nil; if k = 0: no restriction)

Proof.

by induction on the structure of R ∈ P π (on the board)

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 16



A Standard Form

Theorem 12.5 (Standard form)

Every process expression is structurally congruent to a process of the
standard form

new x1, . . . , xk (P1 ‖ . . . ‖ Pm ‖ !Q1 ‖ . . . ‖ !Qn)

where each Pi is a non-empty sum, and each Qj is in standard form.

(If m = n = 0: nil; if k = 0: no restriction)

Proof.

by induction on the structure of R ∈ P π (on the board)

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 16



The Reaction Relation

Thanks to Theorem 12.5, only processes in standard form need to be
considered for defining the operational semantics:

Definition 12.6

The reaction relation −→⊆ P π × P π is generated by the rules:
(Tau)

τ.P +Q −→ P

(React)
(x(y).P +Q) ‖ (x〈z〉.R+ S) −→ P [y 7→ z] ‖ R

(Par)
P −→ P ′

P ‖ Q −→ P ′ ‖ Q

(Res)
P → P ′

new xP −→ new xP ′

(Struct)
P −→ P ′

Q −→ Q′
if P ≡ Q and P ′ ≡ Q′

(P [y 7→ z] replaces every free occurrence of y in P by z.
In (React), the pair (x(y), x〈z〉) is called a redex.)

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 17


	Repetition: Modeling Mobile Concurrent Systems
	Another Example: Mobile Clients
	The Monadic -Calculus

