Modeling Concurrent and Probabilistic Systems

Lecture 12: The Monadic w-Calculus

Joost-Pieter Katoen Thomas Noll

Software Modeling and Verification Group
RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/mcps07/

Winter Semester 2007/08

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/mcps07/

@ Repetition: Modeling Mobile Concurrent Systems

m ing i ter Semester :

Repetition: Mobility in Concurrent Systems I

Observation: CCS imposes a static communication structure: if
P,@Q € Prc want to communicate, then both must syntactically refer to
the same action name

— every potential communication partner known beforehand,
no dynamic passing of communication links

= no mobility

Goal: develop calculus in the spirit of CCS which supports mobility

— m-calculus

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08

Repetition: Mobility in Concurrent Systems 11

Example (Dynamic access to resources)

@ Server S controls access to printer P
o Client C' wishes to use P

o In CCS: P and C must share some action name a
=—> C could access P without being granted it by S
@ In m-calculus :

o initially only S has access to P (using link a)
e using another link b, C' can request access to P

e Formally:
a: link to P
o b: link between S and C

b{a).S" || b(c).&d).C" || ale).P’
—_—— —]— V——

S (& P
I, g | @(d).C" || a(e).P’ e c: “placeholder” for a
T 8| C" || Plew d] o d: data to be printed
e e: “placeholder” for d

m“ Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08

Repetition: Mobility in Concurrent Systems 111

Example (Dynamic access to resources; continued)

o Different roles of action name a:
e in interaction between S and C:
object transferred from S to C
e in interaction between C' and P:
name of communication link
o Intuitively, names represent access rights:
e a: for P
o b: for S
e d: for data to be printed

o If a is only way to access P
= P “moves” from S to C

lmH Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08

© Another Example: Mobile Clients

m i Concurrent and Probabilisti Winter Semeste

Mbobile Clients 1

Scenario:

client devices moving around (phones, PCs, sensors, ...)
each radioconnected to some base station
stations wired to central control

some event (e.g., signal fading) may cause a client to be switched
to another station

essential: specification of switching process (“hand-over protocol”)

Simplest case: two stations, one client

Client
talk1, /'switchq
Station Idle

gainy\\lose1 gainy, " loses
Control

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08

Mbobile Clients 11

@ Every station is in one of two modes: Station (active; four links) or Idle
(inactive; two links)

@ Client can talk via Station, and at any time Control can request
Station/Idle to lose/gain Client:

Station(talk, switch, gain, lose) = talk.Station(talk, switch, gain, lose) +
lose(t, s).switch(t, s).Idle(gain, lose)
Idle(gain, lose) = gain(t, s).Station(t, s, gain, lose)

o If Control decides Station to lose Client, it issues a new pair of channels
to be shared by Client and Idle:

Controly = losey (talka, switcha).gaing(talks, switchs). Controly
Controly = loses(talky, switchy).gaing (talky, switchy).Controly

@ Client can either talk or, if requested, switch to a new pair of channels:

Client (talk, switch) = talk.Client (talk, switch) + switch(t, s).Client(t, s)

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 8

Mbobile Clients 111

@ As usual, the whole system is a restricted composition of processes:
System, = new L (Client, || Station, || Idles || Controly)
where
Client; := Client(talk,, switch;)
Station; := Station(talk;, switch;, gain,, lose;)

Idle; = Idle(gain,, lose;)
L := (talk;, switch;, gain,;, lose; | i € {1,2})

@ After having formally defined the m-calculus we will see that this
protocol is correct, i.e., that the hand-over does indeed occur:

System,; —* Systemq

where

Systemy = new L (Clients || Idle; || Stations || Controls)

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08

@ The Monadic 7-Calculus

m ing i ter Semester :

Introduction

Literature on m-calculus:

o Initial research paper:
R. Milner, J. Parrow, D. Walker: A calculus of mobile processes,
Part I/II. Journal of Inf. & Comp., 100:1-77, 1992

e Overview article:
J. Parrow: An introduction to the w-calculus , Chapter 8 of
Handbook of Process Algebra, 479-543, Elsevier, 2001

o Textbook:
R. Milner: Communicating and Mobile Systems: the pi-Calculus.
Cambridge University Press, 1999

To simplify the presentation (as in Milner’s book):

@ Monadic w-calculus with replication
(message = one name, no process identifiers)

@ Extension to polyadic calculus

@ Extension by process equations

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08

Syntax of the Monadic 7-Calculus

Definition 12.1 (Syntax of monadic 7-calculus)

o Let N ={a,b,c...,x,y,z,...} be a set of names.
@ The set of action prefixes is given by
7= x(y) (receive y along x)
| Z(y) (send y along x)
| 7 (unobservable action)

@ The set P™ of m-calculus process expressions is defined by the
following syntax:

P =3 ;m.P (guarded sum)
| P P (parallel composition)
| newz P (restriction)
| P (replication)
(where [finite, z € N))
Conventions:
nil := > . cpmi-P;, newxy,...,x, P:=newzxy (...newz, P)

m“ Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08

Free and Bound Names

Definition 12.2 (Free and bound names)

@ The input prefix z(y) and the restriction new y P both bind y.

e Every other occurrrence of a name (i.e., z in x(y) and z,y in T(y))
is free.

e The set of bound/free names of a process expressions P € P™ is
denoted by bn(P)/fn(P), resp.

Remark: bn(P) N fn(P) # (0 is possible

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 13

Structural Congruence I

Goal: simplify definition of operational semantics by ignoring “purely
syntactic” differences between processes

Definition 12.3 (Structural congruence)

P,Q € P™ are structurally congruent, written P = @, if one can be
transformed into the other by applying the following operations and
equations:

@ renaming of bound names (a-conversion)

@ reordering of terms in a summation (commutativity of +)

© PIQ=QIP,PI@IR=(PIQIER P|ni=P
(Abelian monoid laws for ||)

Q newznil = nil, newz,y P = newy,z P,
Pl newz@ =newzx (P || Q) if z ¢ fn(P) (scope extension)
@ !P = P ||!P (unfolding)

m“ Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08

Structural Congruence II

Corollary 12.4 (Structural congruence)

= 1s a congruence relation on PT, i.e., if P = Q then
Q@ nP+R=71Q+R

Q@ P|R=Q||Rand R||P=R | Q

@ newz P =newz

Q 'P=Q

apply operations and equations for = within respective contexts []

m“ Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 15

A Standard Form

Theorem 12.5 (Standard form)

FEvery process expression is structurally congruent to a process of the
standard form

newzy, ..., 25 (P || ... || B 11Q1 [.- [|'Qn)

where each P; is a non-empty sum, and each Q; is in standard form.

(If m =n = 0: nil; if k = 0: no restriction)

by induction on the structure of R € P™ (on the board) O

m“ Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 16

The Reaction Relation

Thanks to Theorem 12.5, only processes in standard form need to be
considered for defining the operational semantics:

Definition 12.6
The reaction relation — C P™ x P7 is generated by the rules:

(Tow) TP+@Q — P

et) P+ Q) | @) B+ 8) — Ply—] | R

P— P
PlQ—P|Q

P—- P
newz P — new x P’
(Struct)g:g if P=Q and P’ = Q'
(P[y — z] replaces every free occurrence of y in P by z.
In (React), the pair (x(y),T(z)) is called a redex.)

(Par)

(Res)

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08

	Repetition: Modeling Mobile Concurrent Systems
	Another Example: Mobile Clients
	The Monadic -Calculus

