Modeling Concurrent and Probabilistic Systems

Lecture 13: The Polyadic m-Calculus with Process Calls

Joost-Pieter Katoen Thomas Noll

Software Modeling and Verification Group
RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/mcps07/

Winter Semester 2007/08

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/mcps07/

@ Repetition: The Monadic m-Calculus

m i Concurrent and Probabilisti Winter Semeste

Repetition: Syntax of the Monadic m-Calculus

Definition (Syntax of monadic 7-calculus)

o Let N ={a,b,c...,x,y,z,...} be a set of names.
@ The set of action prefixes is given by
7= x(y) (receive y along x)
| Z(y) (send y along x)
| 7 (unobservable action)

@ The set P™ of m-calculus process expressions is defined by the
following syntax:

P =3 ;m.P (guarded sum)
| P P (parallel composition)
| newzx P (restriction)
| P (replication)
(where [finite, z € N))
Conventions:
nil := > . cpmi-P;, newxy, ..., x, P :=newzy (...newx, P)

m“ Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 3

Repetition: Structural Congruence

Goal: simplify definition of operational semantics by ignoring “purely
syntactic” differences between processes

Definition (Structural congruence)

P,Q € P™ are structurally congruent, written P = @, if one can be
transformed into the other by applying the following operations and
equations:

@ renaming of bound names (a-conversion)

@ reordering of terms in a summation (commutativity of +)

© PIQ=QIP,PI@IR=(PIQIER Pni=P
(Abelian monoid laws for ||)

Q newznil = nil, newz,y P = newy,z P,
Plnewz@ =newz (P || Q) if z ¢ fn(P) (scope extension)
@ !P = P ||!P (unfolding)

m“ Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08

Repetition: A Standard Form

Theorem (Standard form)

FEvery process expression is structurally congruent to a process of the
standard form

newzy, ..., 25 (P || ... || B 11Q1 [.- [|'Qn)

where each P; is a non-empty sum, and each Q; is in standard form.

(If m =n = 0: nil; if k = 0: no restriction)

by induction on the structure of R € P™ (on the board)

m“ Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08

Repetition: The Reaction Relation

Thanks to Theorem 13.3, only processes in standard form need to be
considered for defining the operational semantics:

Definition
The reaction relation — C P™ x P7 is generated by the rules:

(Tow) TP+@Q — P

et) P+ Q) | @) B+ 8) — Ply—] | R

P— P
PlQ—P|Q

P—- P
newz P — new x P’
(Struct)g:g if P=Q and P’ = Q'
(P[y — z] replaces every free occurrence of y in P by z.
In (React), the pair (x(y),T(z)) is called a redex.)

(Par)

(Res)

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08

© Reaction in the Monadic w-Calculus

m ing i ter Semester :

Example: Printer Server
Example 13.1

@ Printer server (cf. Lecture 11):

b(a).S" | ale).P' || b(c).e(d).C" — S' || ale).P' || a(d).C"

S" || a(e).P" || a(d).C" — S’ || P'le—d] || C’

(on the board)

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 8

Example: Printer Server
Example 13.1

@ Printer server (cf. Lecture 11):

b(a).S" | ale).P' || b(c).e(d).C" — S' || ale).P' || a(d).C"

S" || a(e).P" || a(d).C" — S’ || P'le—d] || C’

(on the board)
@ With scope extension (P || newz Q =newz (P || Q) if x ¢ fn(P)):

new b (new a (b(a).S" || a(e).P’) || b(c).¢{d).C")
— newa, b (S’ | a(e).P' || a{d).C")

(on the board)

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 8

Example: Mobile Clients

Example 13.2

@ System specification (cf. Lecture 12):

System, = new L (Clienty || Station, || Idles || Controly)
Systemy = new L (Clients || Idle; || Stations || Controls)
Station(talk, switch, gain, lose)
= talk.Station(talk, switch, gain, lose) +
lose(t, s).switch(t, s).Idle(gain, lose)
Idle(gain, lose) = gain(t, s).Station(t, s, gain, lose)
Controly = losey (talksy, switcha).gaing(talks, switchs). Controly
Controly = losey(talky, switchy).gain, (talky, switchy). Controly
Client(talk, switch) = talk.Client(talk, switch) + switch(t, s).Client(t, s)

m“ Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 9

Example: Mobile Clients

Example 13.2

@ System specification (cf. Lecture 12):

System, = new L (Clienty || Station, || Idles || Controly)
Systemy = new L (Clients || Idle; || Stations || Controls)
Station(talk, switch, gain, lose)
= talk.Station(talk, switch, gain, lose) +
lose(t, s).switch(t, s).Idle(gain, lose)
Idle(gain, lose) = gain(t, s).Station(t, s, gain, lose)
Controly = losey (talksy, switcha).gaing(talks, switchs). Controly
Controly = losey(talky, switchy).gain, (talky, switchy). Controly
Client(talk, switch) = talk.Client(talk, switch) + switch(t, s).Client(t, s)

@ Use additional congruence rule for process calls:
if A(Z) = Py, then A(Y) = PalZ — 9]

m“ Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 9

Example: Mobile Clients

Example 13.2

@ System specification (cf. Lecture 12):

System, = new L (Clienty || Station, || Idles || Controly)
Systemy = new L (Clients || Idle; || Stations || Controls)
Station(talk, switch, gain, lose)
= talk.Station(talk, switch, gain, lose) +
lose(t, s).switch(t, s).Idle(gain, lose)
Idle(gain, lose) = gain(t, s).Station(t, s, gain, lose)
Controly = losey (talksy, switcha).gaing(talks, switchs). Controly
Controly = losey(talky, switchy).gain, (talky, switchy). Controly
Client(talk, switch) = talk.Client(talk, switch) + switch(t, s).Client(t, s)

@ Use additional congruence rule for process calls:
if A(Z) = Py, then A(Y) = PalZ — 9]

@ Use additional reaction rule for polyadic communication:

e @ P+ Q@@ R85 — PG— AR

m“ Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 9

Example: Mobile Clients

Example 13.2

@ System specification (cf. Lecture 12):

System, = new L (Clienty || Station, || Idles || Controly)
Systemy = new L (Clients || Idle; || Stations || Controls)
Station(talk, switch, gain, lose)
= talk.Station(talk, switch, gain, lose) +
lose(t, s).switch(t, s).Idle(gain, lose)
Idle(gain, lose) = gain(t, s).Station(t, s, gain, lose)
Controly = losey (talksy, switcha).gaing(talks, switchs). Controly
Controly = losey(talky, switchy).gain, (talky, switchy). Controly
Client(talk, switch) = talk.Client(talk, switch) + switch(t, s).Client(t, s)

@ Use additional congruence rule for process calls:
if A(Z) = Py, then A(Y) = PalZ — 9]

@ Use additional reaction rule for polyadic communication:
(React’) = — =
(z(@)-P+Q) | (T(2).R+5) — Plj— 2| R
@ Show System; —™ System, (on the board)

m“ Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08

@ The Polyadic 7-Calculus

m ing i ter Semester :

Polyadic Communication I

o So far: messages with exactly one name

e Now: arbitrary number

m Modeling Concurrent and Probabilistic S nter Semester

Polyadic Communication I

o So far: messages with exactly one name
e Now: arbitrary number

e New types of action prefixes:
Y1y, Yn) and T(21y- -y 2n)

where n € N and all y; distinct

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08

Polyadic Communication I

o So far: messages with exactly one name
e Now: arbitrary number

e New types of action prefixes:

Y1y, Yn) and T(21y- -y 2n)

where n € N and all y; distinct

e Expected behavior:
Yty Un) P | T(21,.. ., 2n).Q — Plyr — 21, ..., yn — 2] || @

(replacement of free names)

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 11

Polyadic Communication I

So far: messages with exactly one name

e Now: arbitrary number

New types of action prefixes:

Y1y, Yn) and T(21y- -y 2n)

where n € N and all y; distinct

Expected behavior:

Yty Un) P | T(21,.. ., 2n).Q — Plyr — 21, ..., yn — 2] || @

(replacement of free names)

Obvious attempt for encoding;:

z(y1) ... x(yn).P and T(z1) ... T(zn).Q

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 11

Polyadic Communication II

@ But consider the following counterexample.

Polyadic representation:

z(y1,y2)-P || Z(21, 22).Q [| T(21, 25).Q'
N\
Plyr—zi,y2- 2] | Q | 7(21,25).Q° Plyi—z1, 92— 2] [(21,22).Q || @

/

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 12

Polyadic Communication II

@ But consider the following counterexample.

Polyadic representation:

z(y1,y2)-P || Z(21, 22).Q [| T(21, 25).Q'
N\
Plyr—zi, g 2] | Q | 7(21,25).Q7 Plyi— 21,92 2] || 7(21,22).Q || @

Monadic encoding:
Plyr— 21,2 2] || .../ Plyr— 2,92 - 2] -/

12 12
2(y1)(y2) P || T(21) T(22).Q [| T(21) T(25).Q'
12 12
Ply1— z1,y2 — 21 || ... % Plyi— 2,92 21 || ... %

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08

Polyadic Communication II

@ But consider the following counterexample.

Polyadic representation:

z(y1,y2)-P || Z(21, 22).Q [| T(21, 25).Q'
N\
Plyr—zi, g 2] | Q | 7(21,25).Q7 Plyi— 21,92 2] || 7(21,22).Q || @

Monadic encoding:
Plyr— 21,2 2] || .../ Plyr— 2,92 - 2] -/

12 12
2(y1)(y2) P || T(21) T(22).Q [| T(21) T(25).Q'
12 12
Ply1— z1,y2 — 21 || ... % Plyi— 2,92 21 || ... %

@ Solution: avoid interferences by first introducing a fresh channel:
Y1y Yn)- P — z(w)w(yr) ... w(y,).P
T(21y .-y 2n)-Q — neww (T(w).wW(z1) ... W(z).Q)

where w ¢ fn(Q)

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08

Polyadic Communication II

@ But consider the following counterexample.

Polyadic representation:

z(y1,y2)-P || Z(21, 22).Q [| T(21, 25).Q'
N\
Plyr—zi, g 2] | Q | 7(21,25).Q7 Plyi— 21,92 2] || 7(21,22).Q || @

Monadic encoding:
Plyr— 21,2 2] || .../ Plyr— 2,92 - 2] -/

12 12
2(y1)(y2) P || T(21) T(22).Q [| T(21) T(25).Q'
12 12
Ply1— z1,y2 — 21 || ... % Plyi— 2,92 21 || ... %

@ Solution: avoid interferences by first introducing a fresh channel:
Y1y Yn)- P — z(w)w(yr) ... w(y,).P
T(21y .-y 2n)-Q — neww (T(w).wW(z1) ... W(z).Q)

where w ¢ fn(Q)

@ Correctness: see Ex. 8.4

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08

@ Adding Recursive Process Calls

m ing i ter Semester :

Recursive Process Calls 1

e So far: process replication !P

e Now: parametric process definitions of the form
A(z1,...,2n) = Pa

where A is a process identifier and P4 a process expression
containing calls of A (and other parametric processes)

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08

Recursive Process Calls 1

e So far: process replication !P

e Now: parametric process definitions of the form
A(z1,...,2n) = Pa

where A is a process identifier and P4 a process expression
containing calls of A (and other parametric processes)
@ Again: possible to simulate in basic calculus by using
e message passing to model parameter passing to A
o replication to model the multiple activations of A
e restriction to model the scope of the definition of A

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08

Recursive Process Calls 11

The encoding
e of a process definition A(Z) = Py
e with right-hand side P4 = ... A(@)... A(?) ...
e for main process Q = ... A(%)... A(2)...

is defined as follows:

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08

Recursive Process Calls 11

The encoding
e of a process definition A(Z) = Py
e with right-hand side P4 = ... A(@)... A(?) ...
e for main process Q = ... A(%)... A(2)...
is defined as follows:
@ Let a € N be a new name (standing for A).
@ For any process R, let R be the result of replacing every call A(W)
by a(w).
@ Replace Q by Q" :=newa (Q || 'a(Z).Pya).
(In the presence of more than one process identifier, Q" will contain a
replicated component for each definition.)

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 15

Recursive Process Calls 11

The encoding
e of a process definition A(Z) = Py
e with right-hand side P4 = ... A(@)... A(?) ...
e for main process Q = ... A(%)... A(2)...
is defined as follows:
@ Let a € N be a new name (standing for A).
@ For any process R, let R be the result of replacing every call A(W)
by a(w).
@ Replace Q by Q" :=newa (Q || 'a(Z).Pya).
(In the presence of more than one process identifier, Q" will contain a
replicated component for each definition.)

One-place buffer:
B(in, out) = in(x).out(z).B(in, out)

(on the board)

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 15

	Repetition: The Monadic -Calculus
	Reaction in the Monadic -Calculus
	The Polyadic -Calculus
	Adding Recursive Process Calls

