
Modeling Concurrent and Probabilistic Systems
Lecture 13: The Polyadic π-Calculus with Process Calls

Joost-Pieter Katoen Thomas Noll

Software Modeling and Verification Group
RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/mcps07/

Winter Semester 2007/08

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/mcps07/


Outline

1 Repetition: The Monadic π-Calculus

2 Reaction in the Monadic π-Calculus

3 The Polyadic π-Calculus

4 Adding Recursive Process Calls

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 2



Repetition: Syntax of the Monadic π-Calculus

Definition (Syntax of monadic π-calculus)

Let N = {a, b, c . . . , x, y, z, . . .} be a set of names.
The set of action prefixes is given by

π ::= x(y) (receive y along x)
| x〈y〉 (send y along x)
| τ (unobservable action)

The set P π of π-calculus process expressions is defined by the
following syntax:

P ::=
∑

i∈I πi.Pi (guarded sum)
| P1 ‖ P2 (parallel composition)
| new xP (restriction)
| !P (replication)

(where I finite, x ∈ N )

Conventions:
nil :=

∑
i∈∅ πi.Pi, new x1, . . . , xn P := new x1 (. . . new xn P )

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 3



Repetition: Structural Congruence

Goal: simplify definition of operational semantics by ignoring “purely
syntactic” differences between processes

Definition (Structural congruence)

P,Q ∈ P π are structurally congruent, written P ≡ Q, if one can be
transformed into the other by applying the following operations and
equations:

1 renaming of bound names (α-conversion)
2 reordering of terms in a summation (commutativity of +)
3 P ‖ Q ≡ Q ‖ P , P ‖ (Q ‖ R) ≡ (P ‖ Q) ‖ R, P ‖ nil ≡ P

(Abelian monoid laws for ‖)
4 new x nil ≡ nil, new x, y P ≡ new y, xP ,
P ‖ new xQ ≡ new x (P ‖ Q) if x /∈ fn(P ) (scope extension)

5 !P ≡ P ‖!P (unfolding)

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 4



Repetition: A Standard Form

Theorem (Standard form)

Every process expression is structurally congruent to a process of the
standard form

new x1, . . . , xk (P1 ‖ . . . ‖ Pm ‖ !Q1 ‖ . . . ‖ !Qn)

where each Pi is a non-empty sum, and each Qj is in standard form.

(If m = n = 0: nil; if k = 0: no restriction)

Proof.

by induction on the structure of R ∈ P π (on the board)

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 5



Repetition: The Reaction Relation

Thanks to Theorem 13.3, only processes in standard form need to be
considered for defining the operational semantics:

Definition

The reaction relation −→⊆ P π × P π is generated by the rules:
(Tau)

τ.P +Q −→ P

(React)
(x(y).P +Q) ‖ (x〈z〉.R+ S) −→ P [y 7→ z] ‖ R

(Par)
P −→ P ′

P ‖ Q −→ P ′ ‖ Q

(Res)
P → P ′

new xP −→ new xP ′

(Struct)
P −→ P ′

Q −→ Q′
if P ≡ Q and P ′ ≡ Q′

(P [y 7→ z] replaces every free occurrence of y in P by z.
In (React), the pair (x(y), x〈z〉) is called a redex.)

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 6



Outline

1 Repetition: The Monadic π-Calculus

2 Reaction in the Monadic π-Calculus

3 The Polyadic π-Calculus

4 Adding Recursive Process Calls

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 7



Example: Printer Server

Example 13.1

1 Printer server (cf. Lecture 11):

b〈a〉.S′︸ ︷︷ ︸
S

‖ a(e).P ′︸ ︷︷ ︸
P

‖ b(c).c〈d〉.C ′︸ ︷︷ ︸
C

−→ S′ ‖ a(e).P ′ ‖ a〈d〉.C ′

S′ ‖ a(e).P ′ ‖ a〈d〉.C ′ −→ S′ ‖ P ′[e 7→ d] ‖ C ′

(on the board)
2 With scope extension (P ‖ new xQ ≡ new x (P ‖ Q) if x /∈ fn(P )):

new b (new a (b〈a〉.S′ ‖ a(e).P ′) ‖ b(c).c〈d〉.C ′)
−→ new a, b (S′ ‖ a(e).P ′ ‖ a〈d〉.C ′)

(on the board)

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 8



Example: Mobile Clients

Example 13.2

System specification (cf. Lecture 12):

System1 = newL (Client1 ‖ Station1 ‖ Idle2 ‖ Control1)
System2 = newL (Client2 ‖ Idle1 ‖ Station2 ‖ Control2)

Station(talk , switch, gain, lose)
= talk .Station(talk , switch, gain, lose) +

lose(t, s).switch〈t, s〉.Idle(gain, lose)
Idle(gain, lose) = gain(t, s).Station(t, s, gain, lose)

Control1 = lose1〈talk2, switch2〉.gain2〈talk2, switch2〉.Control2
Control2 = lose2〈talk1, switch1〉.gain1〈talk1, switch1〉.Control1

Client(talk , switch) = talk .Client(talk , switch) + switch(t, s).Client(t, s)

Use additional congruence rule for process calls:
if A(~x) = PA, then A(~y) ≡ PA[~x 7→ ~y]

Use additional reaction rule for polyadic communication:
(React’)

(x(~y).P +Q) ‖ (x〈~z〉.R+ S) −→ P [~y 7→ ~z] ‖ R
Show System1 −→∗ System2 (on the board)

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 9



Outline

1 Repetition: The Monadic π-Calculus

2 Reaction in the Monadic π-Calculus

3 The Polyadic π-Calculus

4 Adding Recursive Process Calls

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 10



Polyadic Communication I

So far: messages with exactly one name
Now: arbitrary number
New types of action prefixes:

x(y1, . . . , yn) and x〈z1, . . . , zn〉

where n ∈ N and all yi distinct
Expected behavior:

x(y1, . . . , yn).P ‖ x〈z1, . . . , zn〉.Q −→ P [y1 7→ z1, . . . , yn 7→ zn] ‖ Q

(replacement of free names)
Obvious attempt for encoding:

x(y1) . . . x(yn).P and x〈z1〉 . . . x〈zn〉.Q

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 11



Polyadic Communication II

But consider the following counterexample.

Polyadic representation:
x(y1, y2).P ‖ x〈z1, z2〉.Q ‖ x〈z′1, z′2〉.Q′

↙↘
P [y1 7→z1, y2 7→z2] ‖ Q ‖ x〈z′1, z′2〉.Q′ P [y1 7→z′1, y2 7→z′2] ‖ x〈z1, z2〉.Q ‖ Q′

Monadic encoding:
P [y1 7→ z1, y2 7→ z2] ‖ . . .√ P [y1 7→ z′1, y2 7→ z′2] ‖ . . .√

↑ 2 ↑ 2
x(y1).x(y2).P ‖ x〈z1〉.x〈z2〉.Q ‖ x〈z′1〉.x〈z′2〉.Q′

↓ 2 ↓ 2
P [y1 7→ z1, y2 7→ z′1] ‖ . . .> P [y1 7→ z′1, y2 7→ z1] ‖ . . .>

Solution: avoid interferences by first introducing a fresh channel:
x(y1, . . . , yn).P 7→ x(w).w(y1) . . . w(yn).P
x〈z1, . . . , zn〉.Q 7→ neww (x〈w〉.w〈z1〉 . . . w〈zn〉.Q)

where w /∈ fn(Q)

Correctness: see Ex. 8.4

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 12



Outline

1 Repetition: The Monadic π-Calculus

2 Reaction in the Monadic π-Calculus

3 The Polyadic π-Calculus

4 Adding Recursive Process Calls

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 13



Recursive Process Calls I

So far: process replication !P
Now: parametric process definitions of the form

A(x1, . . . , xn) = PA

where A is a process identifier and PA a process expression
containing calls of A (and other parametric processes)
Again: possible to simulate in basic calculus by using

message passing to model parameter passing to A
replication to model the multiple activations of A
restriction to model the scope of the definition of A

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 14



Recursive Process Calls II

The encoding
of a process definition A(~x) = PA
with right-hand side PA = . . . A(~u) . . . A(~v) . . .
for main process Q = . . . A(~y) . . . A(~z) . . .

is defined as follows:
1 Let a ∈ N be a new name (standing for A).
2 For any process R, let R̂ be the result of replacing every call A(~w)

by a〈~w〉.
3 Replace Q by Q′ := new a (Q̂ ‖ !a(~x).P̂A).

(In the presence of more than one process identifier, Q′ will contain a
replicated component for each definition.)

Example 13.3

One-place buffer:
B(in, out) = in(x).out〈x〉.B(in, out)

(on the board)

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 15


	Repetition: The Monadic -Calculus
	Reaction in the Monadic -Calculus
	The Polyadic -Calculus
	Adding Recursive Process Calls

