Modeling Concurrent and Probabilistic Systems

Lecture 14: Bisimulation in the m-Calculus

Joost-Pieter Katoen Thomas Noll

Software Modeling and Verification Group
RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/mcps07/

Winter Semester 2007/08

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/mcps07/

@ Repetition: Encoding Recursive Process Calls

m ing i ter Semester :

Repetition: Syntax of the Monadic m-Calculus

Definition (Syntax of monadic 7-calculus)

o Let N ={a,b,c...,x,y,z,...} be a set of names.
@ The set of action prefixes is given by
7= x(y) (receive y along x)
| Z(y) (send y along x)
| 7 (unobservable action)

@ The set P™ of m-calculus process expressions is defined by the
following syntax:

P =3 ;m.P (guarded sum)
| P P (parallel composition)
| newzx P (restriction)
| P (replication)
(where [finite, z € N))
Conventions:
nil := > . cpmi-P;, newxy, ..., x, P :=newzy (...newx, P)

m“ Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 3

Repetition: The Reaction Relation

The reaction relation — C P™ x P7T is generated by the rules:
(Tau)

TP+@Q — P
(React) =
(z(y)-P+Q) || (®(2).R+5) — Ply— 2] | R
(Par) P_’P:
PlQ—P|Q
(Res) P— P ;
newz P — newz P
(Struct)g:g if P=Q and P’ = Q'

(P[y — z] replaces every free occurrence of y in P by z.
In (React), the pair (x(y),T(z)) is called a redex.)

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08

Repetition: Encoding Recursive Process Calls 1

e So far: process replication !P

e Now: parametric process definitions of the form
A(z1,...,2n) = Pa

where A is a process identifier and P4 a process expression
containing calls of A (and other parametric processes)
@ Again: possible to simulate in basic calculus by using
e message passing to model parameter passing to A
o replication to model the multiple activations of A
e restriction to model the scope of the definition of A

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08

Repetition: Encoding Recursive Process Calls 11

The encoding
e of a process definition A(Z) = Py
e with right-hand side Py = ... A(@) ... A(?V)...
e for main process Q@ = ... A(Y)... A(Z)...
is defined as follows:
@ Let a € N be a new name (standing for A).
@ For any process R, let R be the result of replacing every call A(w)
by @(w).
@ Replace Q by Q' :=newa (Q ||'a(Z).Py).
(In the presence of more than one process identifier, " will contain a
replicated component for each definition.)

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 6

Encoding Recursive Process Calls II

@ One-place buffer: B(in, out) = in(z).out{x).B(in, out)

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 7

Encoding Recursive Process Calls II

@ One-place buffer: B(in, out) = in(z).out(z).B(in, out)

@ Main process: Q := in(y) || B(in, out) | out(z)

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 7

Encoding Recursive Process Calls II

@ One-place buffer: B(in, out) = in(z).out(z).B(in, out)

@ Main process: Q := in(y) || B(in, out) | out(z)

@ Encoding: o B
Q' :=newb (in{y) || b{in, out) || out(z) ||
Ib(in, out).in(z).out{x).b{in, out))

=:P

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 7

Encoding Recursive Process Calls II

@ One-place buffer: B(in, out) = in(z).out(z).B(in, out)
@ Main process: Q := in(y) || B(in, out) | out(z)

@ Encoding:

Q' :=newb (in{y) || b(in, out) || out(z) ||
b(in, out).in(zx).out{(z).b(in, out))

=P

new b (in(y) || b{in, out) || out(z) || b (_L out).in(z).out(x).b(in, out) || P)

Modeling Concurrent and Probabilistic Systems

Winter Semester 2007/08 7

Encoding Recursive Process Calls II

@ One-place buffer: B(in, out) = in(z).out(z).B(in, out)

@ Main process: Q := in(y) || B(in, out) | out(z)

@ Encoding: B
Q' = newb (in(y) || b{in, out) || out(z) ||

b(in, out).in(zx).out{(z).b(in, out))

=:P

new b (in(y) || b{in, out) || out(z) || b{m, out).in(x).out(x).b(in, out) || P)
newb (in(y) || out(z) || in(z).out(x).b(in, out) || P)

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 7

Encoding Recursive Process Calls II

@ One-place buffer: B(in, out) = in(z).out(z).B(in, out)

@ Main process: Q := in(y) || B(in, out) | out(z)

@ Encoding: B
Q' = newb (in(y) || b{in, out) || out(z) ||

b(in, out).in(zx).out{(z).b(in, out))

=:P

new b (in(y) || b{in, out) || out(2) || b(in, out).in(z).out{x).b(in, out) || P)

—~

newb (in(y) || out(z) || in(z).out(x).b(in, out) || P)

— —~ —

new b (out(z) || out(y).b(in, out) || P)

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 7

Encoding Recursive Process Calls II

@ One-place buffer: B(in, out) = in(z).out(z).B(in, out)

@ Main process: Q := in(y) || B(in, out) | out(z)

@ Encoding: B
Q' := newb (in(y) || b(in, ou
o(in, out).in(x).

<

s}

IS
—~

8
~

[oalIRN
=

o~
S

s}

<

<
=
S~—

new b (out(z) || out(y).b(in, out) || P)

new b (b(in, out) || P)

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 7

Encoding Recursive Process Calls II

@ One-place buffer: B(in, out) = in(z).out(z).B(in, out)
@ Main process: Q := in(y) || B(in, out) | out(z)

@ Encoding:
Q' :=newb (in{y) || b(in, out) || out(z) ||
b(in, out).in(zx).out{(z).b(in, out))

=P

new b (in(y) || B(in, out) || out(z) | b(lm, out).in(x).out(z).b(in, out) || P)
new b (in(y) || out(2) | inix).W(x).b(in, out) || P)
new b (out(2) | Wtfy).b(z’n, out) || P)
new b (B(in, out) || P)

l
new b (in(z).out(x).b(in, out) || P)

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 7

e The Commitment Relation

m i Concurrent and Probabilisti Winter Semeste

e Goal: establish equivalence relations between m-calculus processes
(e.g., for establishing the correctness of encodings)

m Modeling Concurrent and Probabilistic S nter Semester

e Goal: establish equivalence relations between m-calculus processes
(e.g., for establishing the correctness of encodings)

@ But: reaction relation — C P™ x P™ is too coarse

e For example, z(y).nil and Z(z).nil both have no reactions
— bisimilar w.r.t. —, but different reaction capabilities

m Modeling Concurrent and Probabilistic S nter Semester

e Goal: establish equivalence relations between m-calculus processes
(e.g., for establishing the correctness of encodings)

@ But: reaction relation — C P™ x P™ is too coarse

e For example, z(y).nil and Z(z).nil both have no reactions
— bisimilar w.r.t. —, but different reaction capabilities

@ Solution: introduce commitments in w-calculus, corresponding to
transitions in CCS
e CCS: P|Q=(a.P +..)](aQ +..) =P |Q
la la commitments

Pl Q/

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08

e Goal: establish equivalence relations between m-calculus processes
(e.g., for establishing the correctness of encodings)

@ But: reaction relation — C P™ x P™ is too coarse

e For example, z(y).nil and Z(z).nil both have no reactions
— bisimilar w.r.t. —, but different reaction capabilities
@ Solution: introduce commitments in w-calculus, corresponding to
transitions in CCS
e CCS: P|Q=(a.P +..)](aQ +..) =P |Q
la la commitments
Pl Q/
e m-calculus:

PlQ=(z@)P +...) | (5<?;Q’+---)—>P’[§H5] I

lz commitments
(y).P' (2).Q'
abstraction concretion

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08

Abstraction and Concretions

Definition 14.1

e An abstraction of arity n € N is of the form (Z).P,
where ¥ = (z1,...,2,) and P € P7.

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 10

Abstraction and Concretions

Definition 14.1

e An abstraction of arity n € N is of the form (Z).P,
where ¥ = (z1,...,2,) and P € P7.

e A concretion of arity n € N is of the form new Z (). P,
where ¥ = (y1,...,Yyn), £ C ¢, and P € P™.

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 10

Abstraction and Concretions

Definition 14.1

e An abstraction of arity n € N is of the form (Z).P,
where ¥ = (z1,...,2,) and P € P7.

e A concretion of arity n € N is of the form new Z (). P,
where ¥ = (y1,...,Yyn), £ C ¢, and P € P™.

e An agent is an abstraction or a concretion (notation: A™).

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08

Abstraction and Concretions

Definition 14.1

e An abstraction of arity n € N is of the form (Z).P,
where ¥ = (z1,...,2,) and P € P7.

e A concretion of arity n € N is of the form new Z (). P,
where ¥ = (y1,...,Yyn), £ C ¢, and P € P™.

e An agent is an abstraction or a concretion (notation: A™).

Remarks:
o We use
e F, G to denote abstractions,
e C, D to denote conretions,
o A, B € A™ to denote agents
e Note: a process P € P™ is both an abstraction and a concretion of
arity 0
e =/fn/bn also extends to agents
e Guarded sum now considered as > a; A; where o; € NUN U {7}

lmH Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 10

Application

Definition 14.2

The application F' @ C' (where F' and C' are of equal arity) is defined as

follows, assuming Z' N fn((Z).P) = 0:

(Z).P @ new Z(%).Q := new 2’ (P[Z — 7] | Q)

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 11

Application

Definition 14.2

The application F' @ C' (where F' and C' are of equal arity) is defined as

follows, assuming Z' N fn((Z).P) = 0:

(Z).P @ new Z(%).Q := new 2’ (P[Z — 7] | Q)

Remarks:
e The (React) rule can now be represented as

(React)

@F+P)|[@C+Q) —FacC

e We add the following equations for structural congruence
(assuming z ¢ Z and ZN fn(Q) = 0):

new z ((Z).P) = (Z).new z P

((@).P) [Q = (@).(P || Q)

lmH Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08

Commitment Relation
Definition 14.3

The commitment relation — C A™ x (N UN U {7}) x A” is generated
by the following rules:

P FQ-ZC

(SUM) - (REACT) -
aA+M— A P||Q— FaQC
z P— A T
(PAR)— L TA (RES)— ff¢{x’x}
PllQ— Al Q newz P — newx A

— p p < I N —
strueny L= P — @ @ =0
P—Q

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 12

Commitment Relation
Definition 14.3

The commitment relation — C A™ x (N UN U {7}) x A” is generated
by the following rules: ~
P L FQ-5SC
(SUM) . (REACT) —
aA+M— A P|Q—FQC
a P A z
(PAR)—L —4 (RES)—— R
PllQ— Al Q newz P — newx A
P=P P 5Q Q=
(STRUCT) — @L=q
P—Q

y(2).P || newz (5(2).Q + w(v).R) — newz (P[z — 1] || Q)
(if z ¢ fn(P); on the board)

m“ Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 12

@ Strong Bisimulation

m ing Concurrent and Probabilistic S i r S r 2007,/08

Strong Bisimulation 1

Problem: the target A € A™ of a commitment P - A (where o # 7)
is not necessarily a process, but an abstraction or a concretion

—> extend process equivalences to agent equivalences

m Modeling Concurrent and Probabilistic S nter Semester

Strong Bisimulation 1

Problem: the target A € A™ of a commitment P - A (where o # 7)
is not necessarily a process, but an abstraction or a concretion

—> extend process equivalences to agent equivalences

Definition 14.5

Let p C P™ x P™ be a binary relation on processes. The extension of p
to agents, p C A™ x A7, is defined by

FpG : <= for all §: (F Q (%).nil)p(G Q (g).nil)
CpD :<= there exist PpQ such that C' = new Z' (). P and
D = new Z(%).Q

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 14

Strong Bisimulation II

Definition 14.6 (Strong bisimulation)

A relation p C P™ x PT is called a strong bisimulation if Pp@Q implies
O P-% A — ex. B € A™ such that Q - B and ApB
Q@ Q2 B — ex. A€ A™ such that P % A and ApB

Two agents A, B € A™ are called strongly bisimilar (notation: A ~ B)
if ApB for some strong bisimulation p.

m“ Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 15

Strong Bisimulation II

Definition 14.6 (Strong bisimulation)

A relation p C P™ x PT is called a strong bisimulation if Pp@Q implies
O P-% A — ex. B € A™ such that Q - B and ApB
Q@ Q2 B — ex. A€ A™ such that P % A and ApB

Two agents A, B € A™ are called strongly bisimilar (notation: A ~ B)
if ApB for some strong bisimulation p.

| A

Lemma 14.7

Q@ ~ is a strong bisimulation (the largest one).
Q ~ is an equivalence relation.

m“ Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 15

Strong Bisimulation II

Definition 14.6 (Strong bisimulation)

A relation p C P™ x PT is called a strong bisimulation if Pp@Q implies
O P-% A — ex. B € A™ such that Q - B and ApB
Q@ Q2 B — ex. A€ A™ such that P % A and ApB

Two agents A, B € A™ are called strongly bisimilar (notation: A ~ B)
if ApB for some strong bisimulation p.

| A

Lemma 14.7

Q@ ~ is a strong bisimulation (the largest one).
Q ~ is an equivalence relation.

similar to CCS case (Theorem 4.2)

m“ Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 15

Strong Bisimulation II

Definition 14.6 (Strong bisimulation)

A relation p C P™ x PT is called a strong bisimulation if Pp@Q implies
O P-% A — ex. B € A™ such that Q - B and ApB
Q@ Q2 B — ex. A€ A™ such that P % A and ApB

Two agents A, B € A™ are called strongly bisimilar (notation: A ~ B)
if ApB for some strong bisimulation p.

Lemma 14.7

Q@ ~ is a strong bisimulation (the largest one).
Q ~ is an equivalence relation.

| A

similar to CCS case (Theorem 4.2)

on the board

m“ Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 15

Strong Bisimulation as a Congruence I

@ Problem: strong bisimulation is not a 7-calculus process
congruence

e Not preserved by input prefix

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 16

Strong Bisimulation as a Congruence I

@ Problem: strong bisimulation is not a 7-calculus process
congruence
e Not preserved by input prefix
e Example: P:=7T ||y, Q :=T.y +y.T
o P~ (Q (obvious) but

o Ply— 2] Qly —]
(since Ply — z] =T || — nil and Q[y — 2] = Z.x + 2.7 /)

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08

Strong Bisimulation as a Congruence I

@ Problem: strong bisimulation is not a 7-calculus process
congruence

e Not preserved by input prefix
e Example: P:=7T ||y, Q :=T.y +y.T

o P~ (Q (obvious) but

o Ply—] #Qly— x|

(since Ply — z] =T || — nil and Q[y — 2] = Z.x + 2.7 /)
= (y).P Q (x).nil £ (y).Q Q (z).nil (Def. 14.2 of @)

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08

Strong Bisimulation as a Congruence I

@ Problem: strong bisimulation is not a 7-calculus process
congruence
e Not preserved by input prefix
e Example: P:=7T ||y, Q :=T.y +y.T
o P~ (Q (obvious) but
o Ply— x| # Qly — 7]
(since Ply — z] =T || — nil and Q[y — 2] = Z.x + 2.7 /)
= (y).P Q (x).nil £ (y).Q Q (z).nil (Def. 14.2 of @)
= (y).P # (y).Q (Def. 14.5 of ~ for abstractions)

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08

Strong Bisimulation as a Congruence II

Definition 14.9 (Strong congruence)

Two processes P,Q € P™ are called strongly congruent (P ~ Q) if
Po ~ Qo for every substitution o : N — N.

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 17

Strong Bisimulation as a Congruence II

Definition 14.9 (Strong congruence)

Two processes P,Q € P™ are called strongly congruent (P ~ Q) if
Po ~ Qo for every substitution o : N — N.

~ 18 the largest congruence in ~.

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 17

Strong Bisimulation as a Congruence II

Definition 14.9 (Strong congruence)

Two processes P,Q € P™ are called strongly congruent (P ~ Q) if
Po ~ Qo for every substitution o : N — N.

~ 18 the largest congruence in ~.
OJ

omitted

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 17

	Repetition: Encoding Recursive Process Calls
	The Commitment Relation
	Strong Bisimulation

