
Modeling Concurrent and Probabilistic Systems
Lecture 14: Bisimulation in the π-Calculus

Joost-Pieter Katoen Thomas Noll

Software Modeling and Verification Group
RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/mcps07/

Winter Semester 2007/08

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/mcps07/

Outline

1 Repetition: Encoding Recursive Process Calls

2 The Commitment Relation

3 Strong Bisimulation

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 2

Repetition: Syntax of the Monadic π-Calculus

Definition (Syntax of monadic π-calculus)

Let N = {a, b, c . . . , x, y, z, . . .} be a set of names.
The set of action prefixes is given by

π ::= x(y) (receive y along x)
| x〈y〉 (send y along x)
| τ (unobservable action)

The set P π of π-calculus process expressions is defined by the
following syntax:

P ::=
∑

i∈I πi.Pi (guarded sum)
| P1 ‖ P2 (parallel composition)
| new xP (restriction)
| !P (replication)

(where I finite, x ∈ N)

Conventions:
nil :=

∑
i∈∅ πi.Pi, new x1, . . . , xn P := new x1 (. . . new xn P)

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 3

Repetition: The Reaction Relation

Definition

The reaction relation −→⊆ P π × P π is generated by the rules:
(Tau)

τ.P +Q −→ P

(React)
(x(y).P +Q) ‖ (x〈z〉.R+ S) −→ P [y 7→ z] ‖ R

(Par)
P −→ P ′

P ‖ Q −→ P ′ ‖ Q

(Res)
P → P ′

new xP −→ new xP ′

(Struct)
P −→ P ′

Q −→ Q′
if P ≡ Q and P ′ ≡ Q′

(P [y 7→ z] replaces every free occurrence of y in P by z.
In (React), the pair (x(y), x〈z〉) is called a redex.)

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 4

Repetition: Encoding Recursive Process Calls I

So far: process replication !P
Now: parametric process definitions of the form

A(x1, . . . , xn) = PA

where A is a process identifier and PA a process expression
containing calls of A (and other parametric processes)
Again: possible to simulate in basic calculus by using

message passing to model parameter passing to A
replication to model the multiple activations of A
restriction to model the scope of the definition of A

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 5

Repetition: Encoding Recursive Process Calls II

The encoding
of a process definition A(~x) = PA

with right-hand side PA = . . . A(~u) . . . A(~v) . . .
for main process Q = . . . A(~y) . . . A(~z) . . .

is defined as follows:
1 Let a ∈ N be a new name (standing for A).
2 For any process R, let R̂ be the result of replacing every call A(~w)

by a〈~w〉.
3 Replace Q by Q′ := new a (Q̂ ‖ !a(~x).P̂A).

(In the presence of more than one process identifier, Q′ will contain a
replicated component for each definition.)

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 6

Encoding Recursive Process Calls II

Example

One-place buffer: B(in, out) = in(x).out〈x〉.B(in, out)

Main process: Q := in〈y〉 ‖ B(in, out) ‖ out(z)

Encoding:
Q′ := new b (in〈y〉 ‖ b〈in, out〉 ‖ out(z) ‖

!b(in, out).in(x).out〈x〉.b〈in, out〉︸ ︷︷ ︸
=:P

)

≡
new b (in〈y〉 ‖ b〈in, out〉 ‖ out(z) ‖ b(in, out).in(x).out〈x〉.b〈in, out〉 ‖ P)

↓
new b (in〈y〉 ‖ out(z) ‖ in(x).out〈x〉.b〈in, out〉 ‖ P)

↓
new b (out(z) ‖ out〈y〉.b〈in, out〉 ‖ P)

↓
new b (b〈in, out〉 ‖ P)

↓
new b (in(x).out〈x〉.b〈in, out〉 ‖ P)

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 7

Outline

1 Repetition: Encoding Recursive Process Calls

2 The Commitment Relation

3 Strong Bisimulation

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 8

Commitments

Goal: establish equivalence relations between π-calculus processes
(e.g., for establishing the correctness of encodings)
But: reaction relation −→ ⊆ P π × P π is too coarse
For example, x(y).nil and x〈z〉.nil both have no reactions
=⇒ bisimilar w.r.t. −→, but different reaction capabilities
Solution: introduce commitments in π-calculus, corresponding to
transitions in CCS

CCS: P ‖ Q = (a.P ′ + . . .) ‖ (a.Q′ + . . .) τ−→ P ′ ‖ Q′

↓ a ↓ a commitments
P ′ Q′

π-calculus:
P ‖ Q = (x(~y).P ′ + . . .) ‖ (x〈~z〉.Q′ + . . .) −→ P ′[~y 7→ ~z] ‖ Q′

↓ x ↓ x commitments
(~y).P ′ 〈~z〉.Q′

abstraction concretion

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 9

Abstraction and Concretions

Definition 14.1

An abstraction of arity n ∈ N is of the form (~x).P ,
where ~x = (x1, . . . , xn) and P ∈ P π.
A concretion of arity n ∈ N is of the form new ~x 〈~y〉.P ,
where ~y = (y1, . . . , yn), ~x ⊆ ~y, and P ∈ P π.
An agent is an abstraction or a concretion (notation: Aπ).

Remarks:
We use

F,G to denote abstractions,
C,D to denote conretions,
A,B ∈ Aπ to denote agents

Note: a process P ∈ P π is both an abstraction and a concretion of
arity 0
≡/fn/bn also extends to agents
Guarded sum now considered as

∑
αiAi where αi ∈ N ∪N ∪ {τ}

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 10

Application

Definition 14.2

The application F @ C (where F and C are of equal arity) is defined as
follows, assuming ~z ∩ fn((~x).P) = ∅:

(~x).P @ new ~z 〈~y〉.Q := new ~z (P [~x 7→ ~y] ‖ Q)

Remarks:
The (React) rule can now be represented as

(React)
(xF + P) ‖ (xC +Q) −→ F @ C

We add the following equations for structural congruence
(assuming z /∈ ~x and ~x ∩ fn(Q) = ∅):

new z ((~x).P) ≡ (~x).new z P
((~x).P) ‖ Q ≡ (~x).(P ‖ Q)

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 11

Commitment Relation

Definition 14.3

The commitment relation −→ ⊆ Aπ × (N ∪N ∪ {τ})×Aπ is generated
by the following rules:

(SUM)
α.A+M

α−→ A
(REACT)

P
x−→ F Q

x−→ C

P ‖ Q τ−→ F @ C

(PAR)
P

α−→ A

P ‖ Q α−→ A ‖ Q
(RES)

P
α−→ A α /∈ {x, x̄}

new xP
α−→ new xA

(STRUCT)
P ≡ P ′ P ′ α−→ Q′ Q′ ≡ Q

P
α−→ Q

Example 14.4

y(z).P ‖ new x (y〈x〉.Q+ w〈v〉.R) τ−→ new x (P [z 7→ x] ‖ Q)
(if x /∈ fn(P); on the board)

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 12

Outline

1 Repetition: Encoding Recursive Process Calls

2 The Commitment Relation

3 Strong Bisimulation

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 13

Strong Bisimulation I

Problem: the target A ∈ Aπ of a commitment P α−→ A (where α 6= τ)
is not necessarily a process, but an abstraction or a concretion

=⇒ extend process equivalences to agent equivalences

Definition 14.5

Let ρ ⊆ P π × P π be a binary relation on processes. The extension of ρ
to agents, ρ ⊆ Aπ ×Aπ, is defined by

FρG :⇐⇒ for all ~y : (F @ 〈~y〉.nil)ρ(G @ 〈~y〉.nil)
CρD :⇐⇒ there exist PρQ such that C ≡ new ~z 〈~y〉.P and

D ≡ new ~z 〈~y〉.Q

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 14

Strong Bisimulation II

Definition 14.6 (Strong bisimulation)

A relation ρ ⊆ P π × P π is called a strong bisimulation if PρQ implies
1 P

α−→ A =⇒ ex. B ∈ Aπ such that Q α−→ B and AρB
2 Q

α−→ B =⇒ ex. A ∈ Aπ such that P α−→ A and AρB

Two agents A,B ∈ Aπ are called strongly bisimilar (notation: A .∼ B)
if AρB for some strong bisimulation ρ.

Lemma 14.7
1

.∼ is a strong bisimulation (the largest one).
2

.∼ is an equivalence relation.

Proof.

similar to CCS case (Theorem 4.2)

Example 14.8

on the board
Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 15

Strong Bisimulation as a Congruence I

Problem: strong bisimulation is not a π-calculus process
congruence
Not preserved by input prefix
Example: P := x ‖ y, Q := x.y + y.x

P
.∼ Q (obvious) but

P [y 7→ x] 6 .∼ Q[y 7→ x]
(since P [y 7→ x] = x ‖ x τ−→ nil and Q[y 7→ x] = x.x+ x.x 6 τ−→)

=⇒ (y).P @ 〈x〉.nil 6 .∼ (y).Q @ 〈x〉.nil (Def. 14.2 of @)
=⇒ (y).P 6 .∼ (y).Q (Def. 14.5 of .∼ for abstractions)

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 16

Strong Bisimulation as a Congruence II

Definition 14.9 (Strong congruence)

Two processes P,Q ∈ P π are called strongly congruent (P ∼ Q) if
Pσ

.∼ Qσ for every substitution σ : N → N .

Lemma 14.10

∼ is the largest congruence in .∼.

Proof.

omitted

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 17

	Repetition: Encoding Recursive Process Calls
	The Commitment Relation
	Strong Bisimulation

