Modeling Concurrent and Probabilistic Systems

Lecture 2: Semantics of CCS

Joost-Pieter Katoen Thomas Noll

Software Modeling and Verification Group
RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/mcps07/

Winter Semester 2007/08

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/mcps07/

@ Repetition: Syntax of CCS

Rm Modeling Concurrent and Prot i ter Semester :

Repetition: Syntax of CCS I

Definition (Syntax of CCS)

@ Let N be a set of (action) names.
@ N:={a|ac N} denotes the set of co-names.

@ Act := NU N U {7} is the set of actions where 7 denotes the silent
(or: unobservable) action.

o Let Pid be a set of process identifiers.

@ The set Prc of process expressions is defined by the following

syntax: P = nil (inaction)
| a.P (prefixing)
| P+ P (choice)
| P P (parallel composition)
| newaP (restriction)
| Aa1,...,an) (process call)

where o € Act, a,a; € N, and A € Pid.

m' Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08

Repetition: Syntax of CCS II

Definition (continued)

@ A (recursive) process definition is an equation system of the form
(Ai(ai, - aim;) =P | 1<i < k)

where k > 1, A; € Pid (pairwise different), a;; € N, and P; € Prc
(with process identifiers from {4y,..., Ax}).

m' Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 4

© Semantics of CCS

Rm Modeling Concurrent and Pr

Labeled Transition Systems

Goal: represent behavior of system by (infinite) graph
@ nodes = system states

@ edges = transitions between states

Definition 2.1 (Labeled transition system)

A (Act-)labeled transition system (LTS) is a triple (S, Act, —)
consisting of

@ a set S of states
@ aset Act of (action) labels

@ a transition relation — C S x Act x S

If (s,q,s') € — we write s — §'. An LTS is called finite if S is so.

V.

Remarks:
@ sometimes an initial state so € S is distinguished

o (finite) LTSs correspond to (finite) automata without final states

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 6

Semantics of CCS 1

We define the assignment

syntax — semantics

process definition — LTS

by induction over the syntactic structure of process expressions. Here
we employ derivation rules of the form

premise(s)
————rule name
conclusion

which can be composed to complete derivation trees.

Rm Modeling Concurrent and Probabilistic Systems nter Semester 20

Semantics of CCS I1

Definition 2.2 (Semantics of CCS)

A process definition (A;(ai1,...,amn,;) = P; | 1 <i < k) determines the
LTS (Pre, Act,—) whose transitions can be inferred from the
following rules (P, P/, Q,Q" € Prc, a € Act, \€ NUN, a € N):

A / L /
——— - (At) r— PT Q « (Com)
a.P % P PIQ TP |¢Q
P —>aP’ (Sums) Q —>aQ (Sum>)
P+Q— P P+Q—Q
P — L ¢ — A
Ple—P|Q PlQ—P|Q

P—>P’a¢{aa} » A(@) =P Pla— b -5 P
newa P % newaP’ A(b) -2 P/

(Here P[@ — b] denotes the replacement of every a; by b; in P.)

(Call)

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08

Semantics of CCS III

© One-place buffer:
B(in, out) = in.out.B(in, out)

© Sequential two-place buffer:

Bo(in, out) = in.Bi(in, out)
Bi(in,out) = out.Bo(in, out) + in.By(in, out)
By(in, out) = out.Bi(in, out)

@ Parallel two-place buffer:

By (in, out) = new com (B(in, com) || B(com, out))
B(in,out) = in.out.B(in, out)

(on the board)

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08

Semantics of CCS IV

Example 2.3 (continued)

Complete LTS of parallel two-place buffer:

By (in, out) new com (B(in, com) || B(com, out))
lin /in Tout
new com (¢om.B(in, com) | — new com (B(in, com) ||
B(com, out)) out.B(com, out))
Nout /in

new com (com.B(in, com) || out.B(com, out))

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 10

Recursive Processes

Here: recursive processes defined using equations such as
B(in, out) = in.out.B(in, out)
(simultaneous recursion)

Alternative: explicit fixpoint operator

o syntax: P u=nil|...|fixAP € Prc (where A € Pid)
P[A+— P] % P
fix AP -5 fix AP’

@ semantics: (Fix)

(Act)

in.out.in.out.B - out.in.out.B _
@ example: (Fix)

fix B in.out.B " fix B oul.in.oul.B
(nested scalar recursion)

Advantage: only process term level required (no equations)
= simplification of theory

Disadvantage: bad readability of process definitions

m' Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08

	Repetition: Syntax of CCS
	Semantics of CCS

