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Repetition: Syntax of CCS I

Definition (Syntax of CCS)

Let N be a set of (action) names.

N := {a | a ∈ N } denotes the set of co-names.

Act := N ∪N ∪ {τ} is the set of actions where τ denotes the silent
(or: unobservable) action.

Let Pid be a set of process identifiers.

The set Prc of process expressions is defined by the following
syntax: P ::= nil (inaction)

| α.P (prefixing)
| P1 + P2 (choice)
| P1 ‖ P2 (parallel composition)
| new aP (restriction)
| A(a1, . . . , an) (process call)

where α ∈ Act , a, ai ∈ N , and A ∈ Pid .
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Repetition: Syntax of CCS II

Definition (continued)

A (recursive) process definition is an equation system of the form

(Ai(ai1, . . . , aini
) = Pi | 1 ≤ i ≤ k)

where k ≥ 1, Ai ∈ Pid (pairwise different), aij ∈ N , and Pi ∈ Prc

(with process identifiers from {A1, . . . , Ak}).
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Labeled Transition Systems

Goal: represent behavior of system by (infinite) graph

nodes = system states

edges = transitions between states

Definition 2.1 (Labeled transition system)

A (Act-)labeled transition system (LTS) is a triple (S ,Act ,−→)
consisting of

a set S of states

a set Act of (action) labels

a transition relation −→ ⊆ S × Act × S

If (s, α, s′) ∈ −→ we write s
α

−→ s′. An LTS is called finite if S is so.

Remarks:

sometimes an initial state s0 ∈ S is distinguished

(finite) LTSs correspond to (finite) automata without final states
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Semantics of CCS I

We define the assignment

syntax → semantics

process definition 7→ LTS

by induction over the syntactic structure of process expressions. Here
we employ derivation rules of the form

premise(s)

conclusion
rule name

which can be composed to complete derivation trees.
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Semantics of CCS II

Definition 2.2 (Semantics of CCS)

A process definition (Ai(ai1, . . . , aini
) = Pi | 1 ≤ i ≤ k) determines the

LTS (Prc,Act ,−→) whose transitions can be inferred from the
following rules (P,P ′, Q,Q′ ∈ Prc, α ∈ Act , λ ∈ N ∪ N , a ∈ N ):

α.P
α

−→ P
(Act)

P
λ

−→ P ′ Q
λ

−→ Q′

P ‖ Q
τ

−→ P ′ ‖ Q′
(Com)

P
α

−→ P ′

P + Q
α

−→ P ′
(Sum1)

Q
α

−→ Q′

P + Q
α

−→ Q′
(Sum2)

P
α

−→ P ′

P ‖ Q
α

−→ P ′ ‖ Q
(Par1)

Q
α

−→ Q′

P ‖ Q
α

−→ P ‖ Q′
(Par2)

P
α

−→ P ′ α /∈ {a, a}

new aP
α

−→ new aP ′
(New)

A(~a) = P P [~a 7→ ~b]
α

−→ P ′

A(~b)
α

−→ P ′
(Call)

(Here P [~a 7→ ~b] denotes the replacement of every ai by bi in P .)
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Semantics of CCS III

Example 2.3

1 One-place buffer:

B(in, out) = in.out .B(in, out)

2 Sequential two-place buffer:

B0(in, out) = in.B1(in, out)

B1(in, out) = out .B0(in , out) + in.B2(in, out)

B2(in, out) = out .B1(in , out)

3 Parallel two-place buffer:

B‖(in, out) = new com (B(in, com) ‖ B(com , out))

B(in, out) = in.out .B(in, out)

(on the board)
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Semantics of CCS IV

Example 2.3 (continued)

Complete LTS of parallel two-place buffer:

B‖(in , out) new com (B(in, com) ‖ B(com , out))
↓in ւin ↑out

new com (com .B(in, com) ‖
B(com , out))

τ
−→ new com (B(in, com) ‖

out .B(com , out))
տout ւin

new com (com .B(in , com) ‖ out .B(com , out))
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Recursive Processes

Here: recursive processes defined using equations such as

B(in, out) = in.out .B(in , out)

(simultaneous recursion)

Alternative: explicit fixpoint operator

syntax: P ::= nil | . . . | fixAP ∈ Prc (where A ∈ Pid)

semantics:
P [A 7→ P ]

α
−→ P ′

fixAP
α

−→ fixAP ′
(Fix)

example:
in.out .in.out .B

in
−→ out .in.out .B

(Act)

fixB in.out .B
in
−→ fixB out .in .out .B

(Fix)

(nested scalar recursion)

Advantage: only process term level required (no equations)
=⇒ simplification of theory

Disadvantage: bad readability of process definitions
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