
Modeling Concurrent and Probabilistic Systems

Lecture 2: Semantics of CCS

Joost-Pieter Katoen Thomas Noll

Software Modeling and Verification Group

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/mcps07/

Winter Semester 2007/08

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/mcps07/

Outline

1 Repetition: Syntax of CCS

2 Semantics of CCS

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 2

Repetition: Syntax of CCS I

Definition (Syntax of CCS)

Let N be a set of (action) names.

N := {a | a ∈ N } denotes the set of co-names.

Act := N ∪N ∪ {τ} is the set of actions where τ denotes the silent
(or: unobservable) action.

Let Pid be a set of process identifiers.

The set Prc of process expressions is defined by the following
syntax: P ::= nil (inaction)

| α.P (prefixing)
| P1 + P2 (choice)
| P1 ‖ P2 (parallel composition)
| new aP (restriction)
| A(a1, . . . , an) (process call)

where α ∈ Act , a, ai ∈ N , and A ∈ Pid .

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 3

Repetition: Syntax of CCS II

Definition (continued)

A (recursive) process definition is an equation system of the form

(Ai(ai1, . . . , aini
) = Pi | 1 ≤ i ≤ k)

where k ≥ 1, Ai ∈ Pid (pairwise different), aij ∈ N , and Pi ∈ Prc

(with process identifiers from {A1, . . . , Ak}).

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 4

Outline

1 Repetition: Syntax of CCS

2 Semantics of CCS

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 5

Labeled Transition Systems

Goal: represent behavior of system by (infinite) graph

nodes = system states

edges = transitions between states

Definition 2.1 (Labeled transition system)

A (Act-)labeled transition system (LTS) is a triple (S ,Act ,−→)
consisting of

a set S of states

a set Act of (action) labels

a transition relation −→ ⊆ S × Act × S

If (s, α, s′) ∈ −→ we write s
α

−→ s′. An LTS is called finite if S is so.

Remarks:

sometimes an initial state s0 ∈ S is distinguished

(finite) LTSs correspond to (finite) automata without final states

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 6

Semantics of CCS I

We define the assignment

syntax → semantics

process definition 7→ LTS

by induction over the syntactic structure of process expressions. Here
we employ derivation rules of the form

premise(s)

conclusion
rule name

which can be composed to complete derivation trees.

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 7

Semantics of CCS II

Definition 2.2 (Semantics of CCS)

A process definition (Ai(ai1, . . . , aini
) = Pi | 1 ≤ i ≤ k) determines the

LTS (Prc,Act ,−→) whose transitions can be inferred from the
following rules (P,P ′, Q,Q′ ∈ Prc, α ∈ Act , λ ∈ N ∪ N , a ∈ N):

α.P
α

−→ P
(Act)

P
λ

−→ P ′ Q
λ

−→ Q′

P ‖ Q
τ

−→ P ′ ‖ Q′
(Com)

P
α

−→ P ′

P + Q
α

−→ P ′
(Sum1)

Q
α

−→ Q′

P + Q
α

−→ Q′
(Sum2)

P
α

−→ P ′

P ‖ Q
α

−→ P ′ ‖ Q
(Par1)

Q
α

−→ Q′

P ‖ Q
α

−→ P ‖ Q′
(Par2)

P
α

−→ P ′ α /∈ {a, a}

new aP
α

−→ new aP ′
(New)

A(~a) = P P [~a 7→ ~b]
α

−→ P ′

A(~b)
α

−→ P ′
(Call)

(Here P [~a 7→ ~b] denotes the replacement of every ai by bi in P .)

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 8

Semantics of CCS III

Example 2.3

1 One-place buffer:

B(in, out) = in.out .B(in, out)

2 Sequential two-place buffer:

B0(in, out) = in.B1(in, out)

B1(in, out) = out .B0(in , out) + in.B2(in, out)

B2(in, out) = out .B1(in , out)

3 Parallel two-place buffer:

B‖(in, out) = new com (B(in, com) ‖ B(com , out))

B(in, out) = in.out .B(in, out)

(on the board)

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 9

Semantics of CCS IV

Example 2.3 (continued)

Complete LTS of parallel two-place buffer:

B‖(in , out) new com (B(in, com) ‖ B(com , out))
↓in ւin ↑out

new com (com .B(in, com) ‖
B(com , out))

τ
−→ new com (B(in, com) ‖

out .B(com , out))
տout ւin

new com (com .B(in , com) ‖ out .B(com , out))

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 10

Recursive Processes

Here: recursive processes defined using equations such as

B(in, out) = in.out .B(in , out)

(simultaneous recursion)

Alternative: explicit fixpoint operator

syntax: P ::= nil | . . . | fixAP ∈ Prc (where A ∈ Pid)

semantics:
P [A 7→ P]

α
−→ P ′

fixAP
α

−→ fixAP ′
(Fix)

example:
in.out .in.out .B

in
−→ out .in.out .B

(Act)

fixB in.out .B
in
−→ fixB out .in .out .B

(Fix)

(nested scalar recursion)

Advantage: only process term level required (no equations)
=⇒ simplification of theory

Disadvantage: bad readability of process definitions

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 11

	Repetition: Syntax of CCS
	Semantics of CCS

