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Repetition: Syntax of CCS I

Definition (Syntax of CCS)

@ Let N be a set of (action) names.
@ N:={a|ac N} denotes the set of co-names.

@ Act := NU N U {7} is the set of actions where 7 denotes the silent
(or: unobservable) action.

o Let Pid be a set of process identifiers.

@ The set Prc of process expressions is defined by the following

syntax: P = nil (inaction)
| a.P (prefixing)
| P+ P (choice)
| P P (parallel composition)
| newaP (restriction)
| Aa1,...,an) (process call)

where o € Act, a,a; € N, and A € Pid.
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Repetition: Syntax of CCS II

Definition (continued)

@ A (recursive) process definition is an equation system of the form
(Ai(ai, - aim;) =P | 1<i < k)

where k > 1, A; € Pid (pairwise different), a;; € N, and P; € Prc
(with process identifiers from {4y,..., Ax}).
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© Semantics of CCS
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Labeled Transition Systems

Goal: represent behavior of system by (infinite) graph
@ nodes = system states

@ edges = transitions between states

Definition 2.1 (Labeled transition system)

A (Act-)labeled transition system (LTS) is a triple (S, Act, —)
consisting of

@ a set S of states
@ aset Act of (action) labels

@ a transition relation — C S x Act x S

If (s,q,s') € — we write s — §'. An LTS is called finite if S is so.

V.

Remarks:
@ sometimes an initial state so € S is distinguished

o (finite) LTSs correspond to (finite) automata without final states
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Semantics of CCS 1

We define the assignment

syntax — semantics

process definition — LTS

by induction over the syntactic structure of process expressions. Here
we employ derivation rules of the form

premise(s)
————rule name
conclusion

which can be composed to complete derivation trees.
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Semantics of CCS I1

Definition 2.2 (Semantics of CCS)

A process definition (A;(ai1,...,amn,;) = P; | 1 <i < k) determines the
LTS (Pre, Act,—) whose transitions can be inferred from the
following rules (P, P/, Q,Q" € Prc, a € Act, \€ NUN, a € N):

A / L /
——— - (At) r— PT Q « (Com)
a.P % P PIQ TP |¢Q
P —>aP’ (Sums) Q —>aQ (Sum>)
P+Q— P P+Q—Q
P — L ¢ — A
Ple—P|Q PlQ—P|Q

P—>P’a¢{aa} » A(@) =P Pla— b -5 P
newa P % newaP’ A(b) -2 P/

(Here P[@ — b] denotes the replacement of every a; by b; in P.)

(Call)
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Semantics of CCS III

© One-place buffer:
B(in, out) = in.out.B(in, out)

© Sequential two-place buffer:

Bo(in, out) = in.Bi(in, out)
Bi(in,out) = out.Bo(in, out) + in.By(in, out)
By(in, out) = out.Bi(in, out)

@ Parallel two-place buffer:

By (in, out) = new com (B(in, com) || B(com, out))
B(in,out) = in.out.B(in, out)

(on the board)
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Semantics of CCS IV

Example 2.3 (continued)

Complete LTS of parallel two-place buffer:

By (in, out) new com (B(in, com) || B(com, out))
lin /in Tout
new com (¢om.B(in, com) | — new com (B(in, com) ||
B(com, out)) out.B(com, out))
Nout /in

new com (com.B(in, com) || out.B(com, out))
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Recursive Processes

Here: recursive processes defined using equations such as
B(in, out) = in.out.B(in, out)
(simultaneous recursion)

Alternative: explicit fixpoint operator

o syntax: P u=nil|...|fixAP € Prc (where A € Pid)
P[A+— P] % P
fix AP -5 fix AP’

@ semantics: (Fix)

(Act)

in.out.in.out.B - out.in.out.B _
@ example: (Fix)

fix B in.out.B " fix B oul.in.oul.B
(nested scalar recursion)

Advantage: only process term level required (no equations)
= simplification of theory

Disadvantage: bad readability of process definitions
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