Modeling Concurrent and Probabilistic Systems

Lecture 3: Equivalence of CCS Processes

Joost-Pieter Katoen Thomas Noll

Software Modeling and Verification Group
RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-1i2.informatik.rwth-aachen.de/i2/mcps07/

Winter Semester 2007/08

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/mcps07/

@ Repetition: Syntax and Semantics of CCS

m Modeling Concurrent and Probabilisti ter Semester :

Repetition: Syntax of CCS 1

Definition (Syntax of CCS)

@ Let N be a set of (action) names.
o N :={a|a € N} denotes the set of co-names.

o Act:= NUN U {7} is the set of actions where 7 denotes the silent
(or: unobservable) action.

o Let Pid be a set of process identifiers.

@ The set Prc of process expressions is defined by the following

syntax: P ::= nil (inaction)
| a.P (prefixing)
| P+ P, (choice)
| P P (parallel composition)
| newaP (restriction)
| A(ai,...,an) (process call)

where a € Act, a,a; € N, and A € Pid.

m“ Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 3

Repetition: Syntax of CCS II

Definition (continued)

@ A (recursive) process definition is an equation system of the form
(Ai(ai, .- 0in;) = P |1 <i < k)

where k > 1, A; € Pid (pairwise different), a;; € N, and P; € Prc
(with process identifiers from {Aj,..., Ax}).

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 4

Repetition: Labeled Transition Systems

Goal: represent behavior of system by (infinite) graph
@ nodes = system states

@ edges = transitions between states

Definition (Labeled transition system)

A (Act-)labeled transition system (LTS) is a triple (S, Act, —)
consisting of

e aset S of states
e a set Act of (action) labels

@ a transition relation — C S x Act X S

If (s, ') € — we write s — s'. An LTS is called finite if S is so.

v

Remarks:
e sometimes an initial state sg € §' is distinguished

o (finite) LTSs correspond to (finite) automata without final states

lmH Modeling Concurrent and Probabilistic Systems ‘Winter Semester 2007/08 5

Repetition: Semantics of CCS

Definition (Semantics of CCS)

A process definition (A;(ai1,...,amn,;) = P; | 1 <i < k) determines the
LTS (Prc, Act,—) whose transitions can be inferred from the
following rules (P, P',Q,Q" € Prc, « € Act, \é NUN, a € N):

A / X /

S P=P 0=

a.P— P PlQ—P|Q

PP = Q'
———————— (Sum1) —Q aQ (Sumy)
P+Q— P P+Q— @

rF— L, ©— L (pany)
PllQ—P|Q PlQ—rP|Q

/ =\ — X a /
PP agé{aa} (New) A(@)=P Pla— b — P

— (Call)
newa P % newa P’ A(b) = P

(Here P[d@ — b] denotes the replacement of every a; by b; in P.)

m“ Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08

© Recursive Processes

m Modeling Concurrent and Probabilistic S i r S r 2007,/08

Recursive Processes

Here: recursive processes defined using equations such as
B(in, out) = in.out.B(in, out)

(simultaneous recursion)

m Modeling Concurrent and Probabilistic S nter Semester

Recursive Processes

Here: recursive processes defined using equations such as
B(in, out) = in.out.B(in, out)
(simultaneous recursion)
Alternative: explicit fixpoint operator
o syntax: P u=nil|...|fixAP € Prc (where A € Pid)
P[A— P] 2, p

@ semantics: — T
fix AP — fix AP’

(Fix)

(Act)

in.oul.in. out.B - out.in.out.B _
o example: (Fix)

fix B in.out. B " fix B oul.in.out.3
(nested scalar recursion)

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08

Recursive Processes

Here: recursive processes defined using equations such as
B(in, out) = in.out.B(in, out)
(simultaneous recursion)

Alternative: explicit fixpoint operator

o syntax: P u=nil|...|fixAP € Prc (where A € Pid)
P[A— P] % P
fix AP % fix AP’

@ semantics: (Fix)

(Act)

in.oul.in. out.B - out.in.out.B _
o example: (Fix)

fix B in.out. B " fix B oul.in.out.3
(nested scalar recursion)

Advantage: only process term level required (no equations)
— simplification of theory

Disadvantage: bad readability of process definitions

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08

@ Equivalence of CCS Processes

m Modeling Concurrent and Probabilisti ter Semester :

Equivalence Relations

Goal: identify process expressions which have the same “meaning” but
differ in their syntax

Definition 3.1 (Equivalence relation)

Let 2 C S x S be a binary relation over some set S. Then 2 is called
an equivalence relation if it is

o reflexive, i.e., s = s for every s € S,
e symmetric, i.e., s 2 t implies t = s for every s,t € .S, and

e transitive, i.e., s = ¢t and t = u implies s = u for every s,t,u € S.

v

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 10

Equivalence of CCS Processes

o Generally: two syntactic objects are equivalent if they have the
same “meaning”

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 11

Equivalence of CCS Processes

o Generally: two syntactic objects are equivalent if they have the
same “meaning”

e Here: two processes are equivalent if they have the same
“behavior” (i.e., communication potential)

e Communication potential described by LTS

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 11

Equivalence of CCS Processes

o Generally: two syntactic objects are equivalent if they have the
same “meaning”

e Here: two processes are equivalent if they have the same
“behavior” (i.e., communication potential)

e Communication potential described by LTS

e Idea: choose
meaning of a process P := LTS(P)

e But: yields too many distinctions:

Example 3.2

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 11

Equivalence of CCS Processes

o Generally: two syntactic objects are equivalent if they have the
same “meaning”

e Here: two processes are equivalent if they have the same
“behavior” (i.e., communication potential)

Communication potential described by LTS
Idea: choose

meaning of a process P := LTS(P)
e But: yields too many distinctions:

Example 3.2

X(a) =a.X(a) Y(a)=a.a.Y(a)
LTS: 3 alla

although both processes can (only) execute infinitely many a-actions,
and should be considered equivalent therefore

lmH Modeling Concurrent and Probabilistic Systems ‘Winter Semester 2007/08 11

Desired Properties of Equivalence

Wanted: a “feasible” (i.e., efficiently decidable) semantic equivalence
between CCS processes which

Q identifies processes whose L'T'Ss coincide,

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 12

Desired Properties of Equivalence

Wanted: a “feasible” (i.e., efficiently decidable) semantic equivalence
between CCS processes which

Q identifies processes whose L'T'Ss coincide,

@ implies trace equivalence, i.e., considers two processes equivalent
only if both can execute the same actions sequences (formal
definition later), and

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 12

Desired Properties of Equivalence

Wanted: a “feasible” (i.e., efficiently decidable) semantic equivalence
between CCS processes which
Q identifies processes whose L'T'Ss coincide,
@ implies trace equivalence, i.e., considers two processes equivalent
only if both can execute the same actions sequences (formal
definition later), and

@ is a congruence, i.e., allows to replace a subprocess by an
equivalent counterpart without changing the overall semantics of
the system (formal definition later).

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 12

Desired Properties of Equivalence

Wanted: a “feasible” (i.e., efficiently decidable) semantic equivalence
between CCS processes which

Q identifies processes whose L'T'Ss coincide,

@ implies trace equivalence, i.e., considers two processes equivalent
only if both can execute the same actions sequences (formal
definition later), and

@ is a congruence, i.e., allows to replace a subprocess by an
equivalent counterpart without changing the overall semantics of
the system (formal definition later).

Formally: we are looking for a congruence relation = C Prc x Prc
such that

LTS(P) = LTS(Q) = P=Q — Tr(P)= Tr(Q)

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 12

CCS Congruences

Goal: replacing a subcomponent of a system by an equivalent process
should yield an equivalent systems
—> modular system development

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 13

CCS Congruences

Goal: replacing a subcomponent of a system by an equivalent process
should yield an equivalent systems
—> modular system development

Definition 3.3 (CCS congruence)
An equivalence relation = C Prc x Pre is said to be a CCS congruence

if it is preserved by the CCS constructs; that is, if P,Q, R € Prc such
that P 2 @ then

a.P = a.Q
P+R=Q+R
R+P=ZR+Q
PIR=Q| R
R|P=R|Q
newa P = newa Q)
for every a € Act and a € N.

m“ Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 13

@ Trace Equivalence

m Modeling Concurrent and Probabilistic S i r S r 2007,/08 14

Trace Equivalence 1

Definition 3.4 (Trace language)

For every P € Prc, let
Tr(P) := {w € Act* | ex. P' € Prc such that P)t P’}

be the trace language of P.
P,Q € Prc are called trace equivalent if Tr(P) = Tr(Q).

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 15

Trace Equivalence 1

Definition 3.4 (Trace language)

For every P € Prc, let
Tr(P) := {w € Act* | ex. P' € Prc such that P)t P’}

be the trace language of P.
P,Q € Prc are called trace equivalent if Tr(P) = Tr(Q).

Example 3.5 (One-place buffer)

B(in, out) = in.out.B(in, out)

— Tr(B) = (in - out)* - (in +¢)

lmH Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 15

Trace Equivalence 11

Remarks:

o The trace language of P € Prc is accepted by the LTS of P,
interpreted as an automaton where every state is final.

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 16

Trace Equivalence 11

Remarks:

o The trace language of P € Prc is accepted by the LTS of P,
interpreted as an automaton where every state is final.

o Trace equivalence is obviously an equivalence relation
(i.e., reflexive, symmetric, and transitive).

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 16

Trace Equivalence 11

Remarks:

o The trace language of P € Prc is accepted by the LTS of P,
interpreted as an automaton where every state is final.

o Trace equivalence is obviously an equivalence relation
(i.e., reflexive, symmetric, and transitive).

e Trace equivalence possesses the postulated properties of a process
equivalence:

@ it identifies processes with identical LTSs: the trace language of a
process consists of the (finite) paths in the LTS. Hence processes
with identical LTSs are trace equivalent.

@ it implies trace equivalence: trivial

© it is a congruence:

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 16

CCS Congruences [repetition]

Goal: replacing a subcomponent of a system by an equivalent process
should yield an equivalent systems
—> modular system development

Definition (CCS congruence)

An equivalence relation = C Prc x Pre is said to be a CCS congruence
if it is preserved by the CCS constructs; that is, if P = @ then

aP = aQ
P+R = Q+R
R+P = R+Q
PR = Q|R
R|P = R|Q
newa P = newa(@

for every a € Act, R € Prc, and a € N.

m“ Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08

Trace Equivalence 111

Trace equivalence is a congruence.

m Modeling Concurrent and Probabilisti b Winter Semeste 07/08 18

Trace Equivalence 111

Theorem 3.6

Trace equivalence is a congruence.

Proof.

(only for +; remaining operators analogously)
Clearly we have:

Tr(Pr+ P2) = Tr(P1) U Tr(Ps)

m“ Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 18

Trace Equivalence 111

Theorem 3.6
Trace equivalence is a congruence.

Proof.

(only for +; remaining operators analogously)
Clearly we have:

Tr(Pr+ P2) = Tr(P1) U Tr(Ps)

Now let P,Q, R € Prc with Tr(P) = Tr(Q). Then:
Tr(P + R) Tr(R+ P)
= Tr(P)U Tr(R) = Tr(R)U Tr(P)
= Tr(Q)U Tr(R) = Tr(R)U Tr(Q)
= Tr(Q+R) = Tr(R+Q)

= P+ R,Q + R trace equiv. =— R+ P, R+ Q@ trace equiv.

Ol

m“ Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 18

Trace Equivalence IV

@ We have found a process equivalence with the three required
properties.

m Modeling Concurrent and Probabilistic S

Trace Equivalence IV

@ We have found a process equivalence with the three required
properties.

@ Are we satisfied? No!

P ° and @Q: e
a /" \ a la
bl ° 1o

are trace equivalent (7r(P) = Tr(Q) = {¢,a, ab})

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08

Trace Equivalence IV

@ We have found a process equivalence with the three required
properties.

@ Are we satisfied? No!

P ° and @Q: e
a /" \ a la
bl ° 1o

are trace equivalent (7r(P) = Tr(Q) = {¢,a, ab})
e But P and @ are distinguishable:
e both can execute ab

e but P can deny b
e while @ always has to offer b after a

— take into account such deadlock properties

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08

@ Deadlocks

m i Joncurrent and Probabilistic inter Seme)07/08

Deadlocks 1

Definition 3.7 (Deadlock)

Let P,Q € Prc and w € Act® such that P T Q and Q /.
Then @ is called a w-deadlock of P.

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 21

Deadlocks 1

Definition 3.7 (Deadlock)

Let P,Q € Prc and w € Act® such that P T Q and Q /.
Then @ is called a w-deadlock of P.

@ Thus P := a.b.nil + a.nil has an a-deadlock, in contrast to
Q@ = a.b.nil.

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 21

Deadlocks 1

Definition 3.7 (Deadlock)

Let P,Q € Prc and w € Act® such that P T Q and Q /.
Then @ is called a w-deadlock of P.

@ Thus P := a.b.nil + a.nil has an a-deadlock, in contrast to
Q@ = a.b.nil.

@ Such properties are important since it can be crucial that a certain
communication is eventually possible.

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 21

Deadlocks 1

Definition 3.7 (Deadlock)

Let P,Q € Prc and w € Act® such that P T Q and Q /.
Then @ is called a w-deadlock of P.

@ Thus P := a.b.nil + a.nil has an a-deadlock, in contrast to
Q@ = a.b.nil.
@ Such properties are important since it can be crucial that a certain
communication is eventually possible.
@ We therefore extend our set of postulates: our semantic
equivalence = should
@ identify processes with identical LTSs;
@ imply trace equivalence;
© be a congruence; and

@ Dbe deadlock sensitive, i.e., if P = @ and if P has a w-deadlock, then
Q@ has a w-deadlock (and vice versa, by equivalence).

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 21

Deadlocks 11

The combination of congruence and deadlock sensitivity also excludes
the following equivalence:

P: Ia * Q: a/.\a
A bl T

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08

Deadlocks 11

The combination of congruence and deadlock sensitivity also excludes
the following equivalence:

P Ia 2 Q: a/.\a
b\ e bl lc

If P = Q, by congruence this equivalence should hold in every context.
But C[-] := newa,b, c(a.b.nil || -) yields the following conflict:

C[P]: IT ClQ] : T/.\T
I 0t

no 7-deadlock T-deadlock

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 22

Deadlocks 11

The combination of congruence and deadlock sensitivity also excludes
the following equivalence:

P: Ia 2 Q: a/.\a
b\ e bl lc

If P = Q, by congruence this equivalence should hold in every context.
But C[-] := newa,b, c(a.b.nil || -) yields the following conflict:

C[P]: IT ClQ] : T/.\T
I 0t

no 7-deadlock T-deadlock

(Note: P and @ are obviously trace equivalent)

m Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 22

	Repetition: Syntax and Semantics of CCS
	Recursive Processes
	Equivalence of CCS Processes
	Trace Equivalence
	Deadlocks

