
Modeling Concurrent and Probabilistic Systems
Lecture 3: Equivalence of CCS Processes

Joost-Pieter Katoen Thomas Noll

Software Modeling and Verification Group
RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/mcps07/

Winter Semester 2007/08

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/mcps07/

Outline

1 Repetition: Syntax and Semantics of CCS

2 Recursive Processes

3 Equivalence of CCS Processes

4 Trace Equivalence

5 Deadlocks

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 2

Repetition: Syntax of CCS I

Definition (Syntax of CCS)

Let N be a set of (action) names.
N := {a | a ∈ N } denotes the set of co-names.
Act := N ∪N ∪ {τ} is the set of actions where τ denotes the silent
(or: unobservable) action.
Let Pid be a set of process identifiers.
The set Prc of process expressions is defined by the following
syntax: P ::= nil (inaction)

| α.P (prefixing)
| P1 + P2 (choice)
| P1 ‖ P2 (parallel composition)
| new aP (restriction)
| A(a1, . . . , an) (process call)

where α ∈ Act , a, ai ∈ N , and A ∈ Pid .

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 3

Repetition: Syntax of CCS II

Definition (continued)

A (recursive) process definition is an equation system of the form

(Ai(ai1, . . . , aini) = Pi | 1 ≤ i ≤ k)

where k ≥ 1, Ai ∈ Pid (pairwise different), aij ∈ N , and Pi ∈ Prc
(with process identifiers from {A1, . . . , Ak}).

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 4

Repetition: Labeled Transition Systems

Goal: represent behavior of system by (infinite) graph
nodes = system states
edges = transitions between states

Definition (Labeled transition system)

A (Act-)labeled transition system (LTS) is a triple (S ,Act ,−→)
consisting of

a set S of states
a set Act of (action) labels
a transition relation −→ ⊆ S ×Act × S

If (s, α, s′) ∈ −→ we write s
α−→ s′. An LTS is called finite if S is so.

Remarks:

sometimes an initial state s0 ∈ S is distinguished
(finite) LTSs correspond to (finite) automata without final states

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 5

Repetition: Semantics of CCS

Definition (Semantics of CCS)

A process definition (Ai(ai1, . . . , aini) = Pi | 1 ≤ i ≤ k) determines the
LTS (Prc,Act ,−→) whose transitions can be inferred from the
following rules (P, P ′, Q,Q′ ∈ Prc, α ∈ Act , λ ∈ N ∪N , a ∈ N):

α.P
α−→ P

(Act)
P

λ−→ P ′ Q
λ−→ Q′

P ‖ Q
τ−→ P ′ ‖ Q′

(Com)

P
α−→ P ′

P + Q
α−→ P ′

(Sum1)
Q

α−→ Q′

P + Q
α−→ Q′

(Sum2)

P
α−→ P ′

P ‖ Q
α−→ P ′ ‖ Q

(Par1)
Q

α−→ Q′

P ‖ Q
α−→ P ‖ Q′

(Par2)

P
α−→ P ′ α /∈ {a, a}

new aP
α−→ new aP ′

(New)
A(~a) = P P [~a 7→ ~b]

α−→ P ′

A(~b)
α−→ P ′

(Call)

(Here P [~a 7→ ~b] denotes the replacement of every ai by bi in P .)

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 6

Outline

1 Repetition: Syntax and Semantics of CCS

2 Recursive Processes

3 Equivalence of CCS Processes

4 Trace Equivalence

5 Deadlocks

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 7

Recursive Processes

Here: recursive processes defined using equations such as

B(in, out) = in.out .B(in, out)

(simultaneous recursion)

Alternative: explicit fixpoint operator
syntax: P ::= nil | . . . | fix A P ∈ Prc (where A ∈ Pid)

semantics:
P [A 7→ P]

α−→ P ′

fix A P
α−→ fix A P ′

(Fix)

example:
in.out .in.out .B in−→ out .in.out .B

(Act)

fix B in.out .B in−→ fix B out .in.out .B
(Fix)

(nested scalar recursion)
Advantage: only process term level required (no equations)

=⇒ simplification of theory
Disadvantage: bad readability of process definitions

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 8

Outline

1 Repetition: Syntax and Semantics of CCS

2 Recursive Processes

3 Equivalence of CCS Processes

4 Trace Equivalence

5 Deadlocks

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 9

Equivalence Relations

Goal: identify process expressions which have the same “meaning” but
differ in their syntax

Definition 3.1 (Equivalence relation)

Let ∼= ⊆ S × S be a binary relation over some set S. Then ∼= is called
an equivalence relation if it is

reflexive, i.e., s ∼= s for every s ∈ S,
symmetric, i.e., s ∼= t implies t ∼= s for every s, t ∈ S, and
transitive, i.e., s ∼= t and t ∼= u implies s ∼= u for every s, t, u ∈ S.

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 10

Equivalence of CCS Processes

Generally: two syntactic objects are equivalent if they have the
same “meaning”
Here: two processes are equivalent if they have the same
“behavior” (i.e., communication potential)
Communication potential described by LTS
Idea: choose

meaning of a process P := LTS (P)

But: yields too many distinctions:

Example 3.2

X(a) = a.X(a) Y (a) = a.a.Y (a)

LTS:
•
	
a

•
a ↓↑ a
•

although both processes can (only) execute infinitely many a-actions,
and should be considered equivalent therefore

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 11

Desired Properties of Equivalence

Wanted: a “feasible” (i.e., efficiently decidable) semantic equivalence
between CCS processes which

1 identifies processes whose LTSs coincide,
2 implies trace equivalence, i.e., considers two processes equivalent

only if both can execute the same actions sequences (formal
definition later), and

3 is a congruence, i.e., allows to replace a subprocess by an
equivalent counterpart without changing the overall semantics of
the system (formal definition later).

Formally: we are looking for a congruence relation ∼= ⊆ Prc × Prc
such that

LTS (P) = LTS (Q) =⇒ P ∼= Q =⇒ Tr(P) = Tr(Q)

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 12

CCS Congruences

Goal: replacing a subcomponent of a system by an equivalent process
should yield an equivalent systems
=⇒ modular system development

Definition 3.3 (CCS congruence)

An equivalence relation ∼= ⊆ Prc × Prc is said to be a CCS congruence
if it is preserved by the CCS constructs; that is, if P,Q,R ∈ Prc such
that P ∼= Q then

α.P ∼= α.Q
P + R ∼= Q + R
R + P ∼= R + Q
P ‖ R ∼= Q ‖ R
R ‖ P ∼= R ‖ Q

new aP ∼= new aQ
for every α ∈ Act and a ∈ N .

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 13

Outline

1 Repetition: Syntax and Semantics of CCS

2 Recursive Processes

3 Equivalence of CCS Processes

4 Trace Equivalence

5 Deadlocks

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 14

Trace Equivalence I

Definition 3.4 (Trace language)

For every P ∈ Prc, let

Tr(P) := {w ∈ Act∗ | ex. P ′ ∈ Prc such that P
w−→

∗
P ′}

be the trace language of P .

P,Q ∈ Prc are called trace equivalent if Tr(P) = Tr(Q).

Example 3.5 (One-place buffer)

B(in, out) = in.out .B(in, out)

=⇒ Tr(B) = (in · out)∗ · (in + ε)

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 15

Trace Equivalence II

Remarks:

The trace language of P ∈ Prc is accepted by the LTS of P ,
interpreted as an automaton where every state is final.
Trace equivalence is obviously an equivalence relation
(i.e., reflexive, symmetric, and transitive).
Trace equivalence possesses the postulated properties of a process
equivalence:

1 it identifies processes with identical LTSs: the trace language of a
process consists of the (finite) paths in the LTS. Hence processes
with identical LTSs are trace equivalent.

2 it implies trace equivalence: trivial
3 it is a congruence:

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 16

CCS Congruences [repetition]

Goal: replacing a subcomponent of a system by an equivalent process
should yield an equivalent systems
=⇒ modular system development

Definition (CCS congruence)

An equivalence relation ∼= ⊆ Prc × Prc is said to be a CCS congruence
if it is preserved by the CCS constructs; that is, if P ∼= Q then

α.P ∼= α.Q

P + R ∼= Q + R

R + P ∼= R + Q

P ‖ R ∼= Q ‖ R

R ‖ P ∼= R ‖ Q

new aP ∼= new aQ

for every α ∈ Act , R ∈ Prc, and a ∈ N .

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 17

Trace Equivalence III

Theorem 3.6

Trace equivalence is a congruence.

Proof.

(only for +; remaining operators analogously)
Clearly we have:

Tr(P1 + P2) = Tr(P1) ∪ Tr(P2)

Now let P,Q,R ∈ Prc with Tr(P) = Tr(Q). Then:

Tr(P + R) Tr(R + P)
= Tr(P) ∪ Tr(R) = Tr(R) ∪ Tr(P)
= Tr(Q) ∪ Tr(R) = Tr(R) ∪ Tr(Q)
= Tr(Q + R) = Tr(R + Q)

=⇒ P + R,Q + R trace equiv. =⇒ R + P,R + Q trace equiv.

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 18

Trace Equivalence IV

We have found a process equivalence with the three required
properties.
Are we satisfied? No!

P : •
a ↙↘ a
• •

b ↓
•

and Q : •
↓ a
•
↓ b
•

are trace equivalent (Tr(P) = Tr(Q) = {ε, a, ab})
But P and Q are distinguishable:

both can execute ab
but P can deny b
while Q always has to offer b after a

=⇒ take into account such deadlock properties

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 19

Outline

1 Repetition: Syntax and Semantics of CCS

2 Recursive Processes

3 Equivalence of CCS Processes

4 Trace Equivalence

5 Deadlocks

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 20

Deadlocks I

Definition 3.7 (Deadlock)

Let P,Q ∈ Prc and w ∈ Act∗ such that P
w−→

∗
Q and Q 6−→.

Then Q is called a w-deadlock of P .

Thus P := a.b.nil + a.nil has an a-deadlock, in contrast to
Q := a.b.nil.
Such properties are important since it can be crucial that a certain
communication is eventually possible.
We therefore extend our set of postulates: our semantic
equivalence ∼= should

1 identify processes with identical LTSs;
2 imply trace equivalence;
3 be a congruence; and
4 be deadlock sensitive, i.e., if P ∼= Q and if P has a w-deadlock, then

Q has a w-deadlock (and vice versa, by equivalence).

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 21

Deadlocks II

The combination of congruence and deadlock sensitivity also excludes
the following equivalence:

P : •
↓ a
•

b ↙↘ c
• •

6∼= Q : •
a ↙↘ a
• •

b ↓ ↓ c
• •

If P ∼= Q, by congruence this equivalence should hold in every context.
But C[·] := new a, b, c (a.b.nil ‖ ·) yields the following conflict:

C[P] : •
↓ τ
•
↓ τ
•

C[Q] : •
τ ↙↘ τ
• •

τ ↓
•

no τ -deadlock τ -deadlock

(Note: P and Q are obviously trace equivalent)

Modeling Concurrent and Probabilistic Systems Winter Semester 2007/08 22

	Repetition: Syntax and Semantics of CCS
	Recursive Processes
	Equivalence of CCS Processes
	Trace Equivalence
	Deadlocks

